精英家教网 > 高中数学 > 题目详情
20.设$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是任意的非零向量,且相互不平行,则下面四个命题:
①$(\overrightarrow a•\overrightarrow b)\overrightarrow c-(\overrightarrow c•\overrightarrow a)\overrightarrow b=\overrightarrow 0$;
②$|{\overrightarrow a}|-|{\overrightarrow b}|<|{\overrightarrow a-\overrightarrow b}|$;
③$(\overrightarrow b•\overrightarrow c)\overrightarrow a-(\overrightarrow c•\overrightarrow a)\overrightarrow b$不与$\overrightarrow c$垂直;
④$(3\overrightarrow a+2\overrightarrow b)•(3\overrightarrow a-2\overrightarrow b)=9{|{\overrightarrow a}|^2}-4{|{\overrightarrow b}|^2}$.
其中是真命题的为(  )
A.①③B.②③C.③④D.②④

分析 ①,$(\overrightarrow{a}•\overrightarrow{b})\overrightarrow{c}$是与$\overrightarrow{c}$共线的向量,$(\overrightarrow{c}•\overrightarrow{a})\overrightarrow{b}$是与$\overrightarrow{b}$共线的向量;
②,由向量减法的三角形法则,及三角形的两边之差小于第三边可知;
③,[$(\overrightarrow b•\overrightarrow c)\overrightarrow a-(\overrightarrow c•\overrightarrow a)\overrightarrow b$]•$\overrightarrow c$=0,;
④,$(3\overrightarrow a+2\overrightarrow b)•(3\overrightarrow a-2\overrightarrow b)=9{|{\overrightarrow a}|^2}-4{|{\overrightarrow b}|^2}$成立;

解答 解:设$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是任意的非零向量,且相互不平行:
对于①,$(\overrightarrow{a}•\overrightarrow{b})\overrightarrow{c}$是与$\overrightarrow{c}$共线的向量,$(\overrightarrow{c}•\overrightarrow{a})\overrightarrow{b}$是与$\overrightarrow{b}$共线的向量故$(\overrightarrow a•\overrightarrow b)\overrightarrow c-(\overrightarrow c•\overrightarrow a)\overrightarrow b=\overrightarrow 0$错;
对于②,由向量减法的三角形法则,及三角形的两边之差小于第三边知$|{\overrightarrow a}|-|{\overrightarrow b}|<|{\overrightarrow a-\overrightarrow b}|$,正确;
对于③,∵[$(\overrightarrow b•\overrightarrow c)\overrightarrow a-(\overrightarrow c•\overrightarrow a)\overrightarrow b$]•$\overrightarrow c$=0,故错;
对于④,$(3\overrightarrow a+2\overrightarrow b)•(3\overrightarrow a-2\overrightarrow b)=9{|{\overrightarrow a}|^2}-4{|{\overrightarrow b}|^2}$,正确;
故选:D.

点评 本题考查了命题真假的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在空间中,下列命题正确的是(  )
A.如果平面α⊥平面β,任取直线m?α,那么必有m⊥β
B.如果直线m∥平面α,直线n?α内,那么m∥n
C.如果直线m∥平面α,直线n∥平面α,那么m∥n
D.如果平面α外的一条直线m垂直于平面α内的两条相交直线,那么m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知cos($\frac{5π}{12}$-θ)=$\frac{1}{3}$,则sin($\frac{π}{12}$+θ)的值是(  )
A.-$\frac{1}{3}$B.-$\frac{2\sqrt{2}}{3}$C.$\frac{1}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图:空间四边形ABCD中,E,F,G,H分别是AB,AD,CD,CB上的点,且EF∥GH,求证:EF∥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知:平行四边形ABCD,对角线AC,BD交于点O,点E为线段OB中点,完成下列各题(用于填空的向量为图中已有有向线段所表示向量).
(1)当以{$\overrightarrow{AB}$,$\overrightarrow{AD}$}为基底时,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,
用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{OD}$=$\frac{1}{2}(\overrightarrow{b}-\overrightarrow{a})$;
用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AE}$=$\frac{3}{4}\overrightarrow{a}+\frac{1}{4}\overrightarrow{b}$;
(2)设点MN分别为边DC,BC中点.
①当以{$\overrightarrow{AB}$,$\overrightarrow{AD}$}为基底时,设$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{AD}$=$\overrightarrow{d}$,
用$\overrightarrow{c}$,$\overrightarrow{d}$表示$\overrightarrow{AN}$,则$\overrightarrow{AN}$=$\overrightarrow{c}$+$\frac{1}{2}\overrightarrow{d}$.
②当以{$\overrightarrow{AM}$,$\overrightarrow{AN}$}为基底时,设$\overrightarrow{AM}$=$\overrightarrow{m}$,$\overrightarrow{AN}$=$\overrightarrow{n}$,用$\overrightarrow{m}$,$\overrightarrow{n}$表示:
$\overrightarrow{AB}$=$\frac{4}{3}\overrightarrow{n}-\frac{2}{3}\overrightarrow{m}$,$\overrightarrow{AC}$=$\frac{2}{3}\overrightarrow{n}+\frac{2}{3}\overrightarrow{m}$,$\overline{OE}$=$\frac{1}{2}\overrightarrow{n}+\frac{1}{2}\overrightarrow{m}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:
(1)直线DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知二阶矩阵M有特征值λ=8及对应的一个特征向量$\overrightarrow{e_1}=[\begin{array}{l}1\\ 1\end{array}]$,并且矩阵M将点(-1,3)变换为(0,8).求矩阵M.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.B.5π+6C.3π+6D.4π+6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数$y={log_a}({x^2}-5x-6)$,(0<a<1)的单调递减区间是(6,+∞).

查看答案和解析>>

同步练习册答案