【题目】在四面体中, 底面为的重心, 为线段上一点,且平面,则直线与所成角的余弦值为__________.
科目:高中数学 来源: 题型:
【题目】把函数y=sin(2x+ )的图象向右平移 个单位,再把所得图象上各点的横坐标缩短到原来的 ,则所得图象的函数解析式是( )
A.y=sin(4x+ π)
B.y=sin(4x+ )
C.y=sin4x
D.y=sinx
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖。抽奖规则如下:1、抽奖方案有以下两种:方案,从装有1个红球、2个白球(仅颜色不同)的甲袋中随机摸出1个球,若是红球,则获得奖金15元,否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案,从装有2个红、1个白球(仅颜色不同)的乙袋中随机摸出1个球,若是红球,则获得奖金10元,否则,没有奖金,兑奖后将摸出的球放回乙袋中。
抽奖条件是:顾客购买商品的金额满100元,可根据方案抽奖一;满足150元,可根据方案抽奖(例如某顾客购买商品的金额为310元,则该顾客采用的抽奖方式可以有以下三种,根据方案抽奖三次或方案抽奖两次或方案各抽奖一次)。已知顾客在该商场购买商品的金额为250元。
(1)若顾客只选择根据方案进行抽奖,求其所获奖金为15元的概率;
(2)当若顾客采用每种抽奖方式的可能性都相等,求其最有可能获得的奖金数(0元除外)。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2 ,求直线l的方程
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2 , 它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校在高三抽取了500名学生,记录了他们选修A、B、C三门课的选修情况,如表:
科目 学生人数 | A | B | C |
120 | 是 | 否 | 是 |
60 | 否 | 否 | 是 |
70 | 是 | 是 | 否 |
50 | 是 | 是 | 是 |
150 | 否 | 是 | 是 |
50 | 是 | 否 | 否 |
(Ⅰ)试估计该校高三学生在A、B、C三门选修课中同时选修2门课的概率.
(Ⅱ)若该高三某学生已选修A,则该学生同时选修B、C中哪门的可能性大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①若平面α内的直线l垂直于平面β内的任意直线,则α⊥β;
②若平面α内的任一直线都平行于平面β,则α∥β;
③若平面α垂直于平面β,直线l在平面α内,则l⊥β;
④若平面α平行于平面β,直线l在平面α内,则l∥β.
其中正确命题的个数是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知单调递增的等差数列{an},满足|a10a11|>a10a11 , 且a102<a112 , Sn为其前n项和,则( )
A.a8+a12>0
B.S1 , S2 , …S19都小于零,S10为Sn的最小值
C.a8+a13<0
D.S1 , S2 , …S20都小于零,S10为Sn的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆方程,其左焦点、上顶点和左顶点分别为, , ,坐标原点为,且线段, , 的长度成等差数列.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若过点的一条直线交椭圆于点, ,交轴于点,使得线段被点, 三等分,求直线的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com