精英家教网 > 高中数学 > 题目详情
已知中心在原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1F2,两条曲线在第一象限的交点记为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1e2,则e1·e2的取值范围是(  )
A.0,B.C.,+∞D.,+∞
C
根据已知|PF2|=2c,在椭圆中根据定义2c+10=2a1,离心率e1,在双曲线中根据定义10-2c=2a2,离心率e2.由于PF1F2三点构成三角形,所以2c+2c>10,即c>,根据10-2c=2a2>0可得0<c<5,故<c<5,0< -1<3,所以e1e2>
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆短轴的一个端点为,离心率为.
(1)求椭圆的标准方程;
(2)设直线交椭圆两点,若.求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆:的左焦点为,且过点.

(1)求椭圆的方程;
(2)设过点P(-2,0)的直线与椭圆E交于A、B两点,且满足.
①若,求的值;
②若M、N分别为椭圆E的左、右顶点,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设点P是圆x2y2=4上任意一点,由点Px轴作垂线PP0,垂足为P0,且.
(1)求点M的轨迹C的方程;
(2)设直线lykxm(m≠0)与(1)中的轨迹C交于不同的两点AB.
若直线OAABOB的斜率成等比数列,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线交椭圆C于A,B两点,且△ABF2的周长为8.过定点M(0,3)的直线l1与椭圆C交于G,H两点(点G在点M,H之间).
(1)求椭圆C的方程;
(2)设直线l1的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形为菱形?如果存在,求出m的取值范围;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆为上顶点,为左焦点,为右顶点,且右顶点到直线的距离为,则该椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆=1及以下3个函数:①f(x)=x;②f(x)=sin x;③f(x)=cos x.其中函数图像能等分该椭圆面积的函数个数有(  )
A.1个B.2个
C.3个D.0个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

点P在椭圆上运动,Q、R分别在两圆上运动,则的最小值为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆C=1(ab>0)恒过定点A(1,2),则椭圆的中心到准线的距离的最小值________.

查看答案和解析>>

同步练习册答案