精英家教网 > 高中数学 > 题目详情
16.设F1、F2分别为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右两个焦点.
(Ⅰ)若椭圆C上的点A($\sqrt{6}$,$\frac{2\sqrt{6}}{3}$)到F1、F2两点的距离之和等于6,写出椭圆C的方程和焦点坐标;
(Ⅱ)设点K是(1)中所得椭圆上的动点,求线段F1K的中点M的轨迹方程.

分析 (Ⅰ)由题意可知:2a=6,a=3.将点A($\sqrt{6}$,$\frac{2\sqrt{6}}{3}$)代入椭圆方程:$\frac{6}{9}+\frac{8}{3{b}^{2}}=1$,解得:b2=8,则c2=a2-b2=1,即可求得椭圆C的方程和焦点坐标;
(Ⅱ)设椭圆C上的动点为K(x1,y1),线段F1K的中点Q(x,y)满足x=$\frac{{x}_{1}-1}{2}$,y=$\frac{{y}_{1}}{2}$;求得x1=2x+1,y1=2y,代入椭圆方程,即可求得线段F1K的中点M的轨迹方程.

解答 解:(Ⅰ)椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点在x轴上,由A($\sqrt{6}$,$\frac{2\sqrt{6}}{3}$)到F1、F2两点的距离之和等于6,
则2a=6,即a=3.
又点A($\sqrt{6}$,$\frac{2\sqrt{6}}{3}$)在椭圆上,代入椭圆方程:$\frac{6}{9}+\frac{8}{3{b}^{2}}=1$,解得:b2=8,
于是c2=a2-b2=1.…(4分)
∴椭圆C的方程:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}=1$,…(5分)
焦点F1(-1,0),F2(1,0);…(6分)
(Ⅱ)设椭圆C上的动点为K(x1,y1),线段F1K的中点Q(x,y)满足x=$\frac{{x}_{1}-1}{2}$,y=$\frac{{y}_{1}}{2}$;
即x1=2x+1,y1=2y.…(8分)
代入椭圆方程:$\frac{(2x+1)^{2}}{9}+\frac{(2y)^{2}}{8}=1$,整理得:$\frac{(2x+1)^{2}}{9}+\frac{{y}^{2}}{2}=1$,
∴所求的轨迹方程$\frac{(2x+1)^{2}}{9}+\frac{{y}^{2}}{2}=1$.…(12分)

点评 本题考查椭圆的标准方程及简单几何性质,考查轨迹方程的求法,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,椭圆E的顶点四边形的面积为16.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过椭圆E的顶点P(0,b)的直线l交椭圆于另一点M,交x轴于点N,若|PN|、|PM|、|MN|成等比数列,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图为函数y=m+lognx的图象,求m,n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列选项中,说法正确的是(  )
A.若a>b>0,则${log_{\frac{1}{2}}}a>{log_{\frac{1}{2}}}b$
B.向量$\overrightarrow a=(1,m),\overrightarrow b=(m,2m-1)$(m∈R)共线的充要条件是m=0
C.命题“?n∈N*,3n>(n+2)•2n-1”的否定是“?n∈N*,3n≥(n+2)•2n-1
D.已知函数f(x)在区间[a,b]上的图象是连续不断的,则命题“若f(a)•f(b)<0,则f(x)在区间(a,b)内至少有一个零点”的逆命题为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱柱ABC-A1B1C1中,AB⊥BC,AB1⊥平面ABC,且AB=BC=AB1=2.
(Ⅰ)证明:平面C1CBB1⊥平面A1ABB1
(Ⅱ)若点P为A1C1的中点,求直线BP与平面A1ACC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆${C_1}:{({x-1})^2}+{y^2}=1$与圆${C_2}:{({x+3})^2}+{({y-2})^2}=4$的位置关系是(  )
A.内切B.外切C.相交D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知3是函数$f(x)=\left\{\begin{array}{l}{log_3}(x+t),x≥3\\{3^x},x<3\end{array}\right.$的一个零点,则f[f(6)]的值是(  )
A.4B.3C.2D.log34

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式ax2+bx+c<0的解集为空集,则(  )
A.a<0,△>0B.a<0,△≥0C.a>0,△≤0D.a>0,△≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<\frac{π}{2})$的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数g(x)=lg[f(x)-1]的定义域.

查看答案和解析>>

同步练习册答案