精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,圆C的参数方程 (φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是2ρsin(θ+ )=3 ,射线OM:θ= 与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

【答案】
(1)解:利用cos2φ+sin2φ=1,把圆C的参数方程 (φ为参数)化为(x﹣1)2+y2=1,

∴ρ2﹣2ρcosθ=0,即ρ=2cosθ


(2)解:设(ρ1,θ1)为点P的极坐标,由 ,解得

设(ρ2,θ2)为点Q的极坐标,由 ,解得

∵θ12,∴|PQ|=|ρ1﹣ρ2|=2.

∴|PQ|=2


【解析】解:(I)利用cos2φ+sin2φ=1,即可把圆C的参数方程化为直角坐标方程.(II)设(ρ1 , θ1)为点P的极坐标,由 ,联立即可解得.设(ρ2 , θ2)为点Q的极坐标,同理可解得.利用|PQ|=|ρ1﹣ρ2|即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列
(1)在等差数列{an}中,a6=10,S5=5,求该数列的第8项a8
(2)在等比数列{bn}中,b1+b3=10,b4+b6= ,求该数列的前5项和S5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x﹣2|+|x+1|+2|x+2|.
(1)求证:f(x)≥5;
(2)若对任意实数x,15﹣2f(x)<a2+ 都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(2x﹣ )﹣cos2x. (Ⅰ)求f( )的值;
(Ⅱ)求函数f(x)的最小正周期和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2wx﹣sin2(wx﹣ )(x∈R,w为常数且 <w<1),函数f(x)的图象关于直线x=π对称. (I)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,f( A)= .求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等腰△ABC中,底边BC=2 ,| ﹣t |的最小值为 | |,则△ABC的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ 有两个零点x1、x2
(1)求k的取值范围;
(2)求证:x1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷“与性别有关?

非体育迷

体育迷

合计

10

55

合计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的两条渐近线分别为l1 , l2 , 经过右焦点F垂直于l1的直线分别交l1 , l2 于 A,B 两点.若| |,| |,| |成等差数列,且 反向,则该双曲线的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案