精英家教网 > 高中数学 > 题目详情
2.下面使用类比推理正确的是(  )
A.直线a∥b,b∥c,则a∥c,类推出:向量$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,则$\overrightarrow a∥\overrightarrow c$
B.同一平面内,直线a,b,c,若a⊥c,b⊥c,则a∥b.类推出:空间中,直线a,b,c,若a⊥c,b⊥c,则a∥b
C.实数a,b,若方程x2+ax+b=0有实数根,则a2≥4b.类推出:复数a,b,若方程x2+ax+b=0有实数根,则a2≥4b
D.以点(0,0)为圆心,r为半径的圆的方程为x2+y2=r2.类推出:以点(0,0,0)为球心,r为半径的球的方程为x2+y2+z2=r2

分析 本题考查的知识点是类比推理,我们根据判断命题真假的办法,对四个答案中类比所得的结论逐一进行判断,即可得到答案.

解答 解:对于A,$\overrightarrow{b}$=$\overrightarrow{0}$时,不正确;
对于B,空间中,直线a,b,c,若a⊥c,b⊥c,则a∥b或a⊥b或相交,故不正确;
对于C,方程x02+ix0+(-1±i)=0有实根,但a2≥4b不成立,故C不正确;
对于D,设点P(x,y,z)是球面上的任一点,由|OP|=r,得x2+y2+z2=r2,故D正确.
故选:D.

点评 归纳推理与类比推理不一定正确,我们在进行类比推理时,一定要注意对结论进行进一步的论证,如果要证明一个结论是正确的,要经过严密的论证,但要证明一个结论是错误的,只需要举出一个反例.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知椭圆$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{36}$=1上一点P到其左、右焦点距离之比为1:3,则点P的坐标为(-1,3);(-1,-3),点P到左准线的距离为$\frac{23}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若{x∈R|x2+2(a+1)x+a2-1=0}⊆{x|x2=0},的实数a的取值范围是a≤-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x-eax(a>0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在[$\frac{1}{a}$,$\frac{2}{a}$]上的最大值;
(Ⅲ)若存在x1,x2(x1<x2),使得f(x1)=f(x2)=0,证明:$\frac{{x}_{1}}{{x}_{2}}$<ae.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,过原点O作$\overrightarrow{OM}$,使$\overrightarrow{OM}$⊥$\overrightarrow{AB}$,垂足为M,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在半径是13cm的球面上有A、B、C三点,AB=10cm,BC=6cm,CA=8cm,求球心到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l:x-my-1=0(m≠0)经过抛物线y2=2px(p≠0)的焦点F,且与抛物线交于A、B两点.
(1)求实数p的值,并用m表示|AB|;
(2)设线段AB的垂直平分线与x轴交于点N,求证:|AB|:|FN|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知在△ABC中,角A、B、C对应的边分别为a、b、c,若asin($\frac{π}{2}$+C),bsin($\frac{π}{2}$-B),csin($\frac{π}{2}$-A)依次成等差数列.
(1)求角B;
(2)如果△ABC的外接圆的面积为π,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知过抛物线y2=2x的焦点F作直线交抛物线于A、B两点,若|AB|=$\frac{25}{12}$,且|AF|<|BF|,则|AF|=(  )
A.$\frac{3}{4}$B.$\frac{5}{6}$C.$\frac{5}{4}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案