精英家教网 > 高中数学 > 题目详情
15.设四边形ABCD内接于圆,另一圆的圆心在边AB上并且与四边形的其余三边相切.证明:AD+BC=AB.

分析 利用旋转的性质得出∠AOH=∠AHO,进而得出OA=AH=AE+FC=AE+GC,进而求出OB=BK=BG+FD=BG+ED,即可得出答案.

解答 解:设E、F、G为三边的切点,将△OFC绕O点旋转到△OEH,H在射线ED上,
设θ=∠OCF=∠OHE=∠OCG,
∵四边形ABCD内接于圆,
∴∠A=180°-2θ,∠AOH=180°-(θ+180°-2θ)=θ=∠AHO,
 因此,OA=AH=AE+FC=AE+GC…①
用同样的方法,即将△OFD绕O点顺时针旋转到△OGK,K在GC上,
得到OB=BK=BG+FD=BG+ED…②,
①+②得AB=AD+BC.

点评 此题主要考查了旋转的性质,通过旋转将问题“化整为零”,然后再“各个击破”是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.一个空间几何体的三视图及部分数据如图所示.
(1)请画出该几何体的直观图;
(2)求它的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知正实数a、b、c满足$\frac{1}{e}≤\frac{c}{a}$≤2,clnb=a+clnc,其中e是自然对数的底数,则ln$\frac{b}{a}$的取值范围是(  )
A.[1,+∞)B.$[{1,\frac{1}{2}+ln2}]$C.(-∞,e-1]D.[1,e-1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,在长方体ABCD-A1B1C1D1中,AB=3,AA1=AD=2,BE=1,F是BD1上一点,且EF∥平面ADD1A1,则三棱锥E-AFC的体积为$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)过点(2,0),且离心率为$\frac{1}{2}$.
(1)若M(0,6),求椭圆C1上的点与点 M距离的平方的最大值;
(2)已知过原点 O的直线l与抛物线C2:${y^2}=\frac{{\sqrt{3}}}{2}x$交于 O,A两不同点,与椭圆交于 B,C两不同点,其中 B,C两点的纵坐标分别满足y B<0,yC>0,若$\overrightarrow{{B}{O}}=\overrightarrow{C{A}}$,试求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.自⊙O外一点p引切线与⊙O切于点A,M为PA的中点,过M引割线交⊙O于B、C两点.
求证:
(Ⅰ)PM2=MB•MC;
(Ⅱ)∠MCP=∠MPB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式$|\begin{array}{l}{x}&{1}\\{3}&{x}\end{array}|$+2x>0的解集为{x|x<-3或x>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.直角三角形ABC的直角顶点为C,且AC=3cm,BC=4cm,P为斜边AB上一点,PQ平行于AC且交BC于点Q,PM平行于BC且交AC于点M,问点P在边AB何处时,矩形PQCM的面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)是定义在R上的不恒为零的函数,且对任意的a,b∈R都满足:f(a•b)=af(b)+bf(a),若f(2)=2,Un=f(2n)(n∈N*
(1)求Ul,U2,U3的值.     
(2)求证:Un+1>Un

查看答案和解析>>

同步练习册答案