精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x2
1+x2
,f(1)+f(2)+f(3)+…+f(2011)+f(
1
2
)+f(
1
3
)+…+f(
1
2011
)=
 
考点:函数的值
专题:函数的性质及应用
分析:由已知得f(x)+f(
1
x
)=
x2
1+x2
+
1
x2
1+
1
x2
=1,由此能求出f(1)+f(2)+f(3)+…+f(2011)+f(
1
2
)+f(
1
3
)+…+f(
1
2011
).
解答: 解:∵函数f(x)=
x2
1+x2

∴f(x)+f(
1
x
)=
x2
1+x2
+
1
x2
1+
1
x2
=1,
∴f(1)+f(2)+f(3)+…+f(2011)+f(
1
2
)+f(
1
3
)+…+f(
1
2011

=f(1)+2010×1
=
1
1+1
+2010

=2010.5.
故答案为:2010.5.
点评:本题考查函数值的求法,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(wx+φ)(A>0,w>0,|φ|<
π
2
)的图象在y轴上的截距为
3
,它在y轴右侧的第一个最大值点和最小值点分别为(x0,2)和(x0+π,-2).
(1)求函数f(x)的解析式;
(2)若△ABC中的三个内角A,B,C所对的边分别为a,b,c,且锐角A满足f(A-
π
3
)=
3

又已知a=7,sinB+sinC=
13
3
14
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的内角A,B,C所对的边分别为a,b,c,且B=
π
3

(Ⅰ)若a=2,b=
7
,求c的值;
(Ⅱ)设b=
3
,S为△ABC的面积,求
3
S-cosAcosC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆心在x轴正半轴上,半径为2,且与直线x-
3
y+2=0相切的圆的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<x<1,a=2
x
,b=1+x,c=
1
1-x
,则其中最大的是(  )
A、aB、bC、cD、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

根据条件求下列函数的解析式:
(1)f(x)=3x2-2求f(2x-1)的解析式
(2)f(
x
+1)=x+2
x
.求f(x)的解析式;
(3)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.求f(x)的解析式;
(4)已知2f(x)-f(-x)=x+1,求f(x)的解析式.
(5)设f(x)是R上的函数,且满足f(0)=1,并且对任意实数x,y有f(x-y)=f(x)-y(2x-y+1),求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A中含有元素2,3,a2+2a-3,集合B中含有元素2,|a+3|,若5∈A且5∉B,则实数a的值为(  )
A、-4B、-2C、2D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

lg5+lg2+eln2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={-1,2,3,7},B={0,2,3,8},则A∪B=(  )
A、{-1,2,3,7}
B、{0,2,3,8}
C、{2,3}
D、{-1,0,2,3,7,8}

查看答案和解析>>

同步练习册答案