【题目】如图,在四棱锥中, 为等边三角形,平面平面, , , , , 为的中点.
()求证: .
()求二面角的余弦值.
()若平面,求的值.
【答案】(1)见解析;(2)余弦为;(2).
【解析】试题分析:(1)要证,可以先证明垂直于所在的平面;(2)可以用向量法解决,取的中点,连接,以为原点,分别以为轴建立空间直角坐标系,分别求出两平面、平面的法向量,并求出法向量的夹角的余弦值,进而得到二面角的余弦值;(3)因为平面,只需,利用即可求出的值.
试题解析:(1)由于平面平面, 为等边三角形, 为的中点,则,根据面面垂直性质定理,所以平面,又平面,则.
(2)取的中点,连接,以为原点,分别以为轴建立空间直角坐标系,,由于平面与轴垂直,则设平面的法向量为,设平面的法向量,则,二面角的余弦值,由二面角为钝二面角,所以二面角的斜弦值为.
(3)有(1)知平面,则,若平面,只需,,又
,解得
或,由于,则.
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:①若,则;②若,则;③若,则;④若, 且,则的最小值为9;其中正确命题的序号是______(将你认为正确的命题序号都填上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知圆 的圆心 ,半径 .
(1)求圆 的极坐标方程;
(2)若 ,直线 的参数方程为 为参数),直线 交圆 于 两点,求弦长 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=70,且a2,a7,a22成等比数列.
(1)求数列{an}的通项公式;
(2)设数列的前n项和为Tn,求证: ≤Tn<.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次“汉马”(武汉马拉松比赛的简称)全程比赛中,50名参赛选手(24名男选手和26名女选手)的成绩(单位:分钟)分别为数据 (成绩不为0).
(Ⅰ)24名男选手成绩的茎叶图如图⑴所示,若将男选手成绩由好到差编为1~24号,再用系统抽样方法从中抽取6人,求其中成绩在区间上的选手人数;
(Ⅱ)如图⑵所示的程序用来对这50名选手的成绩进行统计.为了便于区别性别,输入时,男选手的成绩数据用正数,女选手的成绩数据用其相反数(负数),请完成图⑵中空白的判断框①处的填写,并说明输出数值和的统计意义.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为抛物线: 的焦点,点为抛物线上一定点。
(1)直线过点交抛物线于、两点,若,求直线的方程;
(2)过点作两条倾斜角互补的直线分别交抛物线于异于点的两点,试证明直线的斜率为定值,并求出该定值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(14分)关于x的不等式ax2+(a﹣2)x﹣2≥0(a∈R)
(1)已知不等式的解集为(﹣∞,﹣1]∪[2,+∞),求a的值;
(2)解关于x的不等式ax2+(a﹣2)x﹣2≥0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com