精英家教网 > 高中数学 > 题目详情

【题目】已知六面体如图所示,平面分别是棱上的点,且满足.

(1)求证:平面平面

(2)若平面与平面所成的二面角的大小为,求.

【答案】(1)见证明;(2)

【解析】

解法一:(1)连接,设,根据相似三角形以及等分线段性质,即可证明,连接,证明是平行四边形,得到,由两平面平行判定定理即可得到平面平面

解法二:(1)由题意可得,以为原点,轴,轴,轴,建立空间直角坐标系,求出平面的法向量,分别与平面中两个相交向量相乘等于0,即可证明平面平面

2)由(1)可得平面的法向量,再求出平面的法向量,进而求得平面与平面所成的二面角的余弦值,由此求出

解:(1)证法一:连接,设,连接

因为,所以,所以

中,因为

所以,且平面

平面

中,因为

所以,且

所以,因为

所以,所以是平行四边形,

所以,且平面

所以平面,因为,所以平面平面.

证法二:因为,所以

因为平面,所以平面

所以

所在直线为轴,取所在直线为轴,取所在直线为轴,建立如图所示的空间直角坐标系,

由已知可得

所以,因为

所以

所以点的坐标为

同理可求点的坐标为

所以,设为平面的法向量,

,令,解得

所以

因为

所以,且

所以平面平面

(2) 为平面的法向量.

可求平面的一个法向量为

所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以下关于圆锥曲线的命题中:

①双曲线与椭圆有相同焦点;

②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的;

③设为两个定点,为常数,若,则动点的轨迹为双曲线;

④过抛物线的焦点作直线与抛物线相交于,则使它们的横坐标之和等于5的直线有且只有两条;

以上命题正确的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》(第三季)亮点颇多,在“人生自有诗意”的主题下,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《沁园春·长沙》、《蜀道难》、《敕勒歌》、《游子吟》、《关山月》、《清平乐·六盘山》排在后六场,且《蜀道难》排在《游子吟》的前面,《沁园春·长沙》与《清平乐·六盘山》不相邻且均不排在最后,则后六场的排法有__________种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线的对称轴上一点的直线与抛物线相交于MN两点,自MN向直线作垂线,垂足分别为

)当时,求证:

)记的面积分别为,是否存在,使得对任意的,都有成立.若存在,求值;若不在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列满足:.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论正确的是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若存在正数,使恒成立,求实数的最大值;

(2)设,若没有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列1121241248124816其中第一项是,接下来的两项是,再接下来的三项是,依此类推那么该数列的前50项和为  

A. 1044 B. 1024 C. 1045 D. 1025

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

1)若的充分不必要条件,求实数的取值范围;

(2)若为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面平面为等腰直角三角形,,四边形为直角梯形,

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案