精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面是菱形,.

1)证明:平面平面

2)若,求二面角的余弦值.

【答案】1)见解析(2

【解析】

1)通过菱形的性质证得,通过等腰三角形的性质证得,由此证得平面,从而证得平面平面.

2)方法一通过几何法作出二面角的平面角,解三角形求得二面角的余弦值.方法而通过建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.

1)证明:记,连接

因为底面是菱形,

所以的中点.

因为,所以

因为

所以平面

因为平面,所以平面平面

2)因为底面是菱形,

所以是等边三角形,即

因为,所以

,所以

方法一:因为的中点,所以

因为,所以

所以都是等腰三角形.

中点,连接,则,且

所以是二面角的平面角.

因为,且

所以

因为

所以

所以二面角的余弦值为

方法二:如图,以为坐标原点,所在直线分别为轴,轴,轴,建立空间直角坐标系

所以

设平面的法向量为

,得

,得.

同理,可求平面的法向量

所以

所以,二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(数学文卷·2017届重庆十一中高三12月月考第16题) 现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为 ,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】军训时,甲、乙两名同学进行射击比赛,共比赛10场,每场比赛各射击四次,且用每场击中环数之和作为该场比赛的成绩.数学老师将甲、乙两名同学的10场比赛成绩绘成如图所示的茎叶图,并给出下列4个结论:(1)甲的平均成绩比乙的平均成绩高;(2)甲的成绩的极差是29;(3)乙的成绩的众数是21;(4)乙的成绩的中位数是18.则这4个结论中,正确结论的个数为(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着西部大开发的深入,西南地区的大学越来越受到广大考生的青睐,下表是西南地区某大学近五年的录取平均分高于省一本线分值对比表:

年份

2015

2016

2017

2018

2019

年份代码

1

2

3

4

5

录取平均分高于省一本线分值

28

34

41

47

50

1)根据上表数据可知,之间存在线性相关关系,求关于的线性回归方程;

2)假设2020年该省一本线为520分,利用(1)中求出的回归方程预测2020年该大学录取平均分.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】10种不同的作物种子中选出6种分别放入6个不同的瓶子中,每瓶不空,如果甲、乙两种种子都不许放入第一号瓶子内,那么不同的放法共有( 

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数),.

(1)当时,求函数的极小值;

(2)若当时,关于的方程有且只有一个实数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

2)若函数有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆内一点点为圆上任意一点,线段的垂直平分线与线段连线交于点.

1)求点的轨迹方程;

2)设点的轨迹为曲线,过点的直线与曲线交于不同的两点,求的内切圆半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有甲,乙两个车间生产同一种产品,,甲车间有工人人,乙车间有工人人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,甲车间抽取的工人记作第一组,乙车间抽取的工人记作第二组,并对他们中每位工人生产完成的一件产品的事件(单位:)进行统计,按照进行分组,得到下列统计图.

分别估算两个车间工人中,生产一件产品时间少于的人数

分别估计两个车间工人生产一件产品时间的平均值,并推测车哪个车间工人的生产效率更高?

从第一组生产时间少于的工人中随机抽取人,记抽取的生产时间少于的工人人数为随机变量,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案