设函数
(I)讨论的单调性;
(II)若有两个极值点和,记过点的直线的斜率为,问:是否存在,使得?若存在,求出的值,若不存在,请说明理由.
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知函数.
(Ⅰ)求函数的极大值;
(Ⅱ)若对满足的任意实数恒成立,求实数的取值范围(这里是自然对数的底数);
(Ⅲ)求证:对任意正数、、、,恒有
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分13分)
函数.
(1)求证函数在区间上存在唯一的极值点,并用二分法求函数取得极值时相应的近似值(误差不超过);(参考数据,,)
(2)当时,若关于的不等式恒成立,试求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数y=f(x)是定义在区间[-,]上的偶函数,且
x∈[0,]时,
(1)求函数f(x)的解析式;
(2)若矩形ABCD的顶点A,B在函数y=f(x)的图像上,顶点C,D在x轴上,求矩形ABCD面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com