精英家教网 > 高中数学 > 题目详情

设函数
(I)讨论的单调性;
(II)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得?若存在,求出的值,若不存在,请说明理由.

:(I)的定义域为


上单调递增.
的两根都小于0,在上,,故上单调递增.
的两根为
时,;当时,;当时,,故分别在上单调递增,在上单调递减.
(II)由(I)知,
因为,所以

又由(I)知,.于是
若存在,使得.即.亦即

再由(I)知,函数上单调递增,而,所以这与式矛盾.故不存在,使得

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数
(Ⅰ)求函数的极大值;
(Ⅱ)若对满足的任意实数恒成立,求实数的取值范围(这里是自然对数的底数);
(Ⅲ)求证:对任意正数,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数.
(Ⅰ)若,求曲线处切线的斜率;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得 ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(x∈R).
(1)求函数的单调区间和极值;
(2)已知函数的图象与函数的图象关于直线x=1对称,证明当x>1时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)若函数的图象在处的切线方程为,求的值;
(2)若函数上是增函数,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x = 4是函数的一个极值点,(b∈R).
(Ⅰ)求的值;          
(Ⅱ)求函数的单调区间;
(Ⅲ)若函数有3个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)求的单调区间;
(II)若对于所有的成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
函数
(1)求证函数在区间上存在唯一的极值点,并用二分法求函数取得极值时相应的近似值(误差不超过);(参考数据
(2)当时,若关于的不等式恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y=f(x)是定义在区间[-]上的偶函数,且
x∈[0,]时,
(1)求函数f(x)的解析式;
(2)若矩形ABCD的顶点A,B在函数y=f(x)的图像上,顶点C,D在x轴上,求矩形ABCD面积的最大值.

查看答案和解析>>

同步练习册答案