精英家教网 > 高中数学 > 题目详情

【题目】三个班共有名学生,为调查他们的上网情况,通过分层抽样获得了部分学生一周的上网时长,数据如下表(单位:小时):

1)试估计班的学生人数;

2)从这120名学生中任选1名学生,估计这名学生一周上网时长超过15小时的概率;

3)从A班抽出的6名学生中随机选取2人,从B班抽出的7名学生中随机选取1人,求这3人中恰有2人一周上网时长超过15小时的概率.

【答案】136;(2;(3.

【解析】

1)利用分层抽样的方法即可得到答案;

2)利用古典概率的公式即可得到答案;

3)利用分类和分步计数原理和组合公式即可得到答案.

1)由题意知,抽出的20名学生中,来自班的学生有名.

根据分层抽样的方法可知班的学生人数估计为人.

2)设从选出的20名学生中任选1人,共有20种选法,

设此人一周上网时长超过15小时为事件D,

其中D包含的选法有3+2+4=9种,所以 .

由此估计从120名学生中任选1名,

该生一周上网时长超过15小时的概率为.

3)设从班抽出的6名学生中随机选取2人,

其中恰有人一周上网超过15小时为事件,

班抽出的7名学生中随机选取1人,

此人一周上网超过15小时为事件,则所求事件的概率为:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中a为非零常数.

讨论的极值点个数,并说明理由;

证明:在区间内有且仅有1个零点;的极值点,的零点且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数.

1)当时,证明,

2)若函数上存在极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥A-BCD中,,点E为棱CD上的一点,且.

1)求证:平面平面BCD

2)若三棱锥A-BCD的体积为,求三棱锥E-ABD的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆柱的轴截面ABCD是边长为2的正方形,点P是圆弧CD上的一动点(不与CD重合),点Q是圆弧AB的中点,且点PQ在平面ABCD的两侧.

1)证明:平面PAD⊥平面PBC

2)设点P在平面ABQ上的射影为点O,点EF分别是△PQB和△POA的重心,当三棱锥PABC体积最大时,回答下列问题.

i)证明:EF∥平面PAQ

ii)求平面PAB与平面PCD所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, .

(Ⅰ)证明:

(Ⅱ)若,在棱上是否存在点,使得二面角的大小为,若存在,求的长,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)将曲线上各点的纵坐标伸长为原来的倍(横坐标不变)得到曲线,求的参数方程;

2)若分别是直线与曲线上的动点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为了调查该校学生性别与身高的关系,对该校1000名学生按照的比例进行抽样调查,得到身高频数分布表如下:

男生身高频率分布表

男生身高

(单位:厘米)

频数

7

10

19

18

4

2

女生身高频数分布表

女生身高

(单位:厘米)

频数

3

10

15

6

3

3

1)估计这1000名学生中女生的人数;

2)估计这1000名学生中身高在的概率;

3)在样本中,从身高在的女生中任取2名女生进行调查,求这2名学生身高在的概率.(身高单位:厘米)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

如图,已知抛物线,过点任作一直线与相交于两点,过点轴的平行线与直线相交于点为坐标原点).

(1)证明:动点在定直线上;

(2)的任意一条切线(不含轴)与直线相交于点,与(1)中的定直线相交于点,证明:为定值,并求此定值.

查看答案和解析>>

同步练习册答案