Éèf£¨x£©=ex-a£¨x+1£©£®
£¨1£©Èôa£¾0£¬f£¨x£©¡Ý0¶ÔÒ»ÇÐx¡ÊRºã³ÉÁ¢£¬ÇóaµÄ×î´óÖµ£»
£¨2£©Éèg(x)=f(x)+
a
ex
£¬A(x1£¬y1)£¬B(x2£¬y2)(x1¡Ùx2)
ÊÇÇúÏßy=g£¨x£©ÉÏÈÎÒâÁ½µã£¬Èô¶ÔÈÎÒâµÄa¡Ü-1£¬Ö±ÏßABµÄбÂʺã´óÓÚ³£Êým£¬ÇómµÄÈ¡Öµ·¶Î§£»
£¨3£©ÊÇ·ñ´æÔÚÕýÕûÊýa£®Ê¹µÃ1n+3n+¡­+(2n-1)n£¼
e
e-1
(an)n
¶ÔÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¿Èô´æÔÚ£¬ÇóaµÄ×îСֵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉf£¨x£©=ex-a£¨x+1£©£¬Öªf¡ä£¨x£©=ex-a£¬¹Êf£¨x£©min=f£¨lna£©=a-a£¨lna+1£©=-alna£¬ÔÙÓÉf£¨x£©¡Ý0¶ÔÒ»ÇÐx¡ÊRºã³ÉÁ¢£¬ÄÜamax£®
£¨2£©ÓÉf£¨x£©=ex-a£¨x+1£©£¬Öªg£¨x£©=f£¨x£©+
a
ex
=ex+
a
ex
-ax-a
£®ÓÉa¡Ü-1£¬Ö±ÏßABµÄбÂʺã´óÓÚ³£Êým£¬Öªg¡ä£¨x£©=ex-
a
ex
-a¡Ý2
ex•(-
a
ex
)
-a=-a+2
-a
=m£¬£¨a¡Ü-1£©£¬ÓÉ´ËÄÜÇó³öʵÊýmµÄÈ¡Öµ·¶Î§£®
£¨3£©Éèt£¨x£©=ex-x-1£¬Ôòt¡ä£¨x£©=ex-1£¬´Ó¶øµÃµ½ex¡Ýx+1£¬È¡x=-
i
2n
£¬i=1£¬3£¬¡­£¬2n-1
£¬ÓÃÀÛ¼Ó·¨µÃµ½(
1
2n
)n+(
3
2n
)n+¡­+(
2n-1
2n
)n£¼e-
2n-1
2
+e-
2n-3
2
+¡­+e-
1
2
=
e-
1
2
(1-e-n)
1-e-1
£¼
e
e-1
£®ÓÉ´ËÄܹ»ÍƵ¼³ö´æÔÚÕýÕûÊýa=2£®Ê¹µÃ1n+3n+¡­+£¨2n-1£©n£¼
e
e-1
•£¨an£©n£®
½â´ð£º½â£º£¨1£©¡ßf£¨x£©=ex-a£¨x+1£©£¬
¡àf¡ä£¨x£©=ex-a£¬
¡ßa£¾0£¬f¡ä£¨x£©=ex-a=0µÄ½âΪx=lna£®
¡àf£¨x£©min=f£¨lna£©=a-a£¨lna+1£©=-alna£¬
¡ßf£¨x£©¡Ý0¶ÔÒ»ÇÐx¡ÊRºã³ÉÁ¢£¬
¡à-alna¡Ý0£¬
¡àalna¡Ü0£¬
¡àamax=1£®
£¨2£©¡ßf£¨x£©=ex-a£¨x+1£©£¬
¡àg£¨x£©=f£¨x£©+
a
ex
=ex+
a
ex
-ax-a
£®
¡ßa¡Ü-1£¬Ö±ÏßABµÄбÂʺã´óÓÚ³£Êým£¬
¡àg¡ä£¨x£©=ex-
a
ex
-a¡Ý2
ex•(-
a
ex
)
-a=-a+2
-a
=m£¬£¨a¡Ü-1£©£¬
½âµÃm¡Ü3£¬
¡àʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬3]£®
£¨3£©Éèt£¨x£©=ex-x-1£¬
Ôòt¡ä£¨x£©=ex-1£¬Áît¡ä£¨x£©=0µÃ£ºx=0£®
ÔÚx£¼0ʱt¡ä£¨x£©£¼0£¬f£¨x£©µÝ¼õ£»ÔÚx£¾0ʱt¡ä£¨x£©£¾0£¬f£¨x£©µÝÔö£®
¡àt£¨x£©×îСֵΪf£¨0£©=0£¬¹Êex¡Ýx+1£¬
È¡x=-
i
2n
£¬i=1£¬3£¬¡­£¬2n-1
£¬
µÃ1-
i
2n
¡Üe-
i
2n
£¬¼´(
2n-i
2n
)n¡Üe-
i
2
£¬
ÀÛ¼ÓµÃ(
1
2n
)n+(
3
2n
)n+¡­+(
2n-1
2n
)n£¼e-
2n-1
2
+e-
2n-3
2
+¡­+e-
1
2
=
e-
1
2
(1-e-n)
1-e-1
£¼
e
e-1
£®
¡à1n+3n+¡­+£¨2n-1£©n£¼
e
e-1
•£¨2n£©n£¬
¹Ê´æÔÚÕýÕûÊýa=2£®Ê¹µÃ1n+3n+¡­+£¨2n-1£©n£¼
e
e-1
•£¨an£©n£®
µãÆÀ£º±¾Ì⿼²éÂú×ãÌõ¼þµÄʵÊýµÄ×î´óÖµµÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµØʵÊýµÄÈ¡Öµ·¶Î§µÄÇ󷨣¬Ì½Ë÷Âú×ãÌõ¼þµÄʵÊýµÄ×îСֵ£®×ÛºÏÐÔÇ¿£¬ÄѶȴ󣮽âÌâʱҪÈÏÕæÉóÌ⣬ºÏÀíµØÔËËãµ¼ÊýÐÔÖʽøÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèf£¨x£©=ex-a£¨x+1£©£®
£¨1£©Èôa£¾0£¬f£¨x£©¡Ý0¶ÔÒ»ÇÐx¡ÊRºã³ÉÁ¢£¬ÇóaµÄ×î´óÖµ£®
£¨2£©Éèg£¨x£©=f£¨x£©+
a
ex
£¬ÇÒA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¨x1¡Ùx2£©ÊÇÇúÏßy=g£¨x£©ÉÏÈÎÒâÁ½µã£¬Èô¶ÔÈÎÒâµÄa¡Ü-1£¬Ö±ÏßABµÄбÂʺã´óÓÚ³£Êým£¬ÇómµÄÈ¡Öµ·¶Î§£»
£¨3£©ÇóÖ¤£º1n+3n+¡­+£¨2n-1£©n£¼
e
e-1
•(2n)n
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2012-2013ѧÄê½­ËÕÊ¡ÄϾ©ÊиßÈý£¨ÉÏ£©ÆÚÖÐÊýѧÊÔ¾í£¨ÎÄ¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Éèf£¨x£©=ex-a£¨x+1£©£®
£¨1£©Èôa£¾0£¬f£¨x£©¡Ý0¶ÔÒ»ÇÐx¡ÊRºã³ÉÁ¢£¬ÇóaµÄ×î´óÖµ£»
£¨2£©ÉèÊÇÇúÏßy=g£¨x£©ÉÏÈÎÒâÁ½µã£¬Èô¶ÔÈÎÒâµÄa¡Ü-1£¬Ö±ÏßABµÄбÂʺã´óÓÚ³£Êým£¬ÇómµÄÈ¡Öµ·¶Î§£»
£¨3£©ÊÇ·ñ´æÔÚÕýÕûÊýa£®Ê¹µÃ¶ÔÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¿Èô´æÔÚ£¬ÇóaµÄ×îСֵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2013Äê½­ËÕÊ¡ÄÏͨÊи߿¼Ñ§¿Æ»ùµØÊýѧģÄâÊÔ¾í£¨Ê®£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Éèf£¨x£©=ex-a£¨x+1£©£®
£¨1£©Èôa£¾0£¬f£¨x£©¡Ý0¶ÔÒ»ÇÐx¡ÊRºã³ÉÁ¢£¬ÇóaµÄ×î´óÖµ£»
£¨2£©ÉèÊÇÇúÏßy=g£¨x£©ÉÏÈÎÒâÁ½µã£¬Èô¶ÔÈÎÒâµÄa¡Ü-1£¬Ö±ÏßABµÄбÂʺã´óÓÚ³£Êým£¬ÇómµÄÈ¡Öµ·¶Î§£»
£¨3£©ÊÇ·ñ´æÔÚÕýÕûÊýa£®Ê¹µÃ¶ÔÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¿Èô´æÔÚ£¬ÇóaµÄ×îСֵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2013Äê½­ËÕÊ¡¸ß¿¼ÊýѧģÄâÊÔ¾í£¨Ê®£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Éèf£¨x£©=ex-a£¨x+1£©£®
£¨1£©Èôa£¾0£¬f£¨x£©¡Ý0¶ÔÒ»ÇÐx¡ÊRºã³ÉÁ¢£¬ÇóaµÄ×î´óÖµ£»
£¨2£©ÉèÊÇÇúÏßy=g£¨x£©ÉÏÈÎÒâÁ½µã£¬Èô¶ÔÈÎÒâµÄa¡Ü-1£¬Ö±ÏßABµÄбÂʺã´óÓÚ³£Êým£¬ÇómµÄÈ¡Öµ·¶Î§£»
£¨3£©ÊÇ·ñ´æÔÚÕýÕûÊýa£®Ê¹µÃ¶ÔÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¿Èô´æÔÚ£¬ÇóaµÄ×îСֵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸