精英家教网 > 高中数学 > 题目详情

4—4 坐标系与参数方程

求圆心为,半径为3的圆的极坐标方程.

4-4解:设圆上任一点为,则

,而点符合,

故所求圆的极坐标方程为.                ……………10分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)(选修4-4坐标系与参数方程)已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是
x=-
3
5
t+2
y=
4
5
t
(t为参数).设直线l与x轴的交点是M,N是曲线C上一动点,则|MN|的最大值为
5
+1
5
+1

(2)(选修4-5不等式选讲)设函数f(x)=|x-1|+|x-2|,若不等式|a+b|+|a-b|≥|a|f(x),(a≠0,a,b∈R)恒成立,则实数x的取值范围是
1
2
≤x≤
5
2
1
2
≤x≤
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海口模拟)选修4-4坐标系与参数方程
在平面直角坐标系中,取原点为极点x轴正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为:ρ=2cosθ,直线C2的参数方程为:
x=1+
2
2
t
y=3+
2
2
t
(t为参数)
(I )求曲线C1的直角坐标方程,曲线C2的普通方程.
(II)先将曲线C1上所有的点向左平移1个单位长度,再把图象上所有点的横坐标伸长到原来的
3
倍得到曲线C3,P为曲线C3上一动点,求点P到直线C2的距离的最小值,并求出相应的P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)(选修4-4坐标系与参数方程)
已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,则极点到该直线的距离是
2
2
2
2

(2)(选修4-5 不等式选讲)
已知lga+lgb=0,则满足不等式
a
a2+1
+
b
b2+1
≤λ
的实数λ的范围是
[1,+∞)
[1,+∞)

(3)(选修4-1 几何证明选讲)
如图,两个等圆⊙O与⊙O′外切,过O作⊙O′的两条切线OA,OB,A,B是切点,点C在圆O′上且不与点A,B重合,则∠ACB=
60°
60°

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-4坐标系与参数方程)已知极坐标的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合,曲线C的参数方程为
x=cosθ
y=sinθ
(θ为参数),直线l的极坐标方程为ρcos(θ-
π
3
)=6
.则直线与曲线C的位置关系为
相离
相离

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-4.坐标系与参数方程)

已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为为参数),求直线被曲线截得的线段长度。

查看答案和解析>>

同步练习册答案