精英家教网 > 高中数学 > 题目详情
19.已知向量$\overrightarrow a=(1,3)$,$\overrightarrow b=(m,-1)$,若$\overrightarrow a⊥\overrightarrow b$,则m=3.

分析 直接利用向量的数量积运算法则求解即可.

解答 解:向量$\overrightarrow a=(1,3)$,$\overrightarrow b=(m,-1)$,若$\overrightarrow a⊥\overrightarrow b$,
则1•m-3×1=0
解得m=3.
故答案为:3.

点评 本题考查斜率的数量积的运算,向量创造条件的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若点(a,b)在曲线$\frac{{x}^{2}}{b}$+$\frac{{y}^{2}}{a}$=0上,则a,b满足的条件是a+b=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知sinα+$\sqrt{3}$cosα=2,则tanα=(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某几何体的三视图如图所示,则该几何体的表面积为$4+4\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,该程序运行后输出的结果是(  )
A.120B.240C.360D.720

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式$\frac{2-3x}{x-1}>0$的解集为(  )
A.$(-∞,\frac{3}{4})$B.$(-∞,\frac{2}{3})$C.$(-∞,\frac{2}{3})∪(1,+∞)$D.$(\frac{2}{3},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.关于x的实系数一元二次方程x2+px+2=0的两个虚数根为z1、z2,若z1、z2在复平面上对应的点是经过原点的椭圆的两个焦点,则该椭圆的长轴长为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=-$\sqrt{2}$sin(2x+$\frac{π}{4}$)+6sinxcosx-2cos2x+1,x∈R.
(1)求f(x)的最小正周期;
(2)将函数f(x)的图象向左平移$\frac{π}{4}$个单位长度,再向下平移m(m>0)个单位后得到函数g(x)的图象,且函数g(x)的最大值为$\sqrt{2}$.
①求函数g(x)的解析式;
②函数y=g(x)在区间[a,b](a,b∈R且a<b)上至少含有30个零点,在满足条件的上述条件[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某几何体的三视图如图所示,求该几何体的表面积、体积.

查看答案和解析>>

同步练习册答案