精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,直线的参数方程为为参数,).
(1)化曲线的极坐标方程为直角坐标方程;
(2)若直线经过点,求直线被曲线截得的线段的长.
(1)  ;(2)8

试题分析:(1)极坐标化为直角坐标的基本公式是,本小题要在极坐标方程的两边乘以一个.再根据基本转化公式,即可化简.
(2)解(一)将直线的参数方程化为直角方程,在联立抛物线方程,消去y即可得到一个关于x的一元二次方程,从而利用韦达定理,以及弦长公式求出弦长.解(二)由直线的参数方程与抛物线方程联立.再根据弦长公式,利用韦达定理即可求出弦长.
试题解析:解法(一):(1)由,即曲线C的直角坐标方程为.
(2)由直线经过点(1,0),得直线的直角坐标系方程是,联立,消去y,得,又点(1,0)是抛物线的焦点,由抛物线定义,得弦长=6+2=8.
解法(二):(1)同解法一.
(2)由直线经过点(1,0),得,直线的参数方程为将直线的参数方程代入,得,所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知直线y=-2上有一个动点Q,过点Q作直线l1垂直于x轴,动点P在l1上,且满足OP⊥OQ(O为坐标原点),记点P的轨迹为C.
(1)求曲线C的方程.
(2)若直线l2是曲线C的一条切线,当点(0,2)到直线l2的距离最短时,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为抛物线上的动弦,且, 则弦的中点轴的最小距离为
A.2B.C.1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=2px(p>0)的焦点F且倾斜角为60°的直线l与抛物线分别交于AB两点,则的值等于(  ).
A.5B.4 C.3D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点(2,3)与抛物线的焦点的距离是5,那么P=       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线与抛物线相交于两点,为抛物线的焦点.若,则实数        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线上与焦点的距离等于6的点横坐标是(   )
A.1 B.2C.3  D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线轴旋转一周形成一个如图所示的旋转体,在此旋转体内水平放入一个正方体,该正方体的一个面恰好与旋转体的开口面平齐,则此正方体的棱长是             

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米。当水面升高1米后,水面宽度是________米。

查看答案和解析>>

同步练习册答案