精英家教网 > 高中数学 > 题目详情

【题目】若存在,使得对任意恒成立,则函数上有下界,其中为函数的一个下界;若存在,使得对任意恒成立,则函数上有上界,其中为函数的一个上界.如果一个函数既有上界又有下界,那么称该函数有界.

下述四个结论:①1不是函数的一个下界;②函数有下界,无上界;③函数有上界,无下界;④函数有界.

其中所有正确结论的编号是(

A.①②B.②④C.③④D.

【答案】B

【解析】

根据函数上界、下界及有界的概念,利用导数判断函数的单调性并求最值,结合选项,利用排除法,对结论①②③④进行逐项判断即可.

对于结论①:当时,由对勾函数的性质知,函数恒成立,所以可得函数对任意恒成立,即1是函数的一个下界,故结论①错误;

对于结论②:因为函数,所以,所以当时,;当时,,故函数上单调递减,在上单调递增,所以当时,函数有最小值为,即存在使任意恒成立,故函数有下界;当时,函数,故函数无上界;因此结论②正确;

对于结论③:因为函数,所以,所以当时,;当时,;当时,;所以函数 上单调递增;在上单调递减,当时,,所以函数无上界,故结论③错误;

对于结论④:因为函数为周期函数,且,当时,,该函数为振荡函数,所以对任意函数恒成立,故函数有界,故结论④正确.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.

表1:甲套设备的样本的频数分布表

质量指标值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

频数

1

5

18

19

6

1

图1:乙套设备的样本的频率分布直方图

(Ⅰ)将频率视为概率. 若乙套设备生产了5000件产品,则其中的不合格品约有多少件;

(Ⅱ)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;

甲套设备

乙套设备

合计

合格品

不合格品

合计

(Ⅲ)根据表1和图1,对两套设备的优劣进行比较.

附:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4 — 4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为).

1)分别写出直线的普通方程与曲线的直角坐标方程;

2)已知点,直线与曲线相交于两点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一副直角三角板(如图1)拼接,将折起,得到三棱锥(如图2).

(1)若分别为的中点,求证: 平面

(2)若平面平面,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为.直线被称作为椭圆的一条准线.在椭圆(异于椭圆左、右顶点),过点作直线与椭圆相切,且与直线相交于点.

1)求证:.

2)若点轴的上方,,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

①命题“若,则”的逆否命题;

②“,使得”的否定是:“,均有”;

③命题“”是“”的充分不必要条件;

为真命题.

其中真命题的序号是________.(填写所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形ABCDAF⊥平面ABC,且.E为线段DC上一点,沿直线AE将△ADE翻折成M的中点,则三棱锥体积的最小值是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某数学小组从医院和气象局获得20181月至6月份每月20的昼夜温差,()和患感冒人数(/人)的数据,画出如图的折线图.

1)建立关于的回归方程(精确到0.01),预测20191月至6月份昼夜温差为时患感冒的人数(精确到整数);

2)求的相关系数,并说明的相关性的强弱(若,则认为具有较强的相关性),

参考数据:

相关系数:,回归直线方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为贯彻落实党中央全面建设小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2018年底,按照农村家庭人均年纯收入8000元的小康标准,该地区仅剩部分家庭尚未实现小康.20197月,为估计该地能否在2020年全面实现小康,统计了该地当时最贫困的一个家庭201916月的人均月纯收入,作出散点图如下:

根据相关性分析,发现其家庭人均月纯收入与时间代码之间具有较强的线性相关关系(记20191月、2月……分别为,…,依此类推),由此估计该家庭2020年能实现小康生活.20201月突如其来的新冠肺炎疫情影响了奔小康的进展,该家庭2020年第一季度每月的人均月纯收入均只有201912月的预估值的.

1)求该家庭20203月份的人均月纯收人;

2)如果以该家庭3月份人均月纯收入为基数,以后每月的增长率为,为使该家庭2020年能实现小康生活,至少应为多少?(结果保留两位小数)

参考数据:.

参考公式:线性回归方程中,

.

查看答案和解析>>

同步练习册答案