精英家教网 > 高中数学 > 题目详情

【题目】已知为坐标原点,在圆:.

1)求实数的值;

2)求过圆心且与直线平行的直线的方程;

3)过点作互相垂直的直线,,与圆交于两点,与圆交于两点,的最大值.

【答案】123

【解析】

1)点在圆:,即可求得答案;

2)直线的斜率为,以的圆心为,因为过圆心且与直线平行的直线的方程为:,即可求得答案;

3)设直线的方程为,的方程为,求出圆心直线的距离和圆心到直线的距离,即可,结合已知,根据均值不等式,即可求得答案.

1在圆:

解得:

2直线的斜率为,的圆心为

过圆心且与直线平行的直线的方程为:

3的标准方程为:

故直线的斜率均存在.

设直线的方程为,的方程为

于是圆心直线的距离为:

圆心到直线的距离为

可得的取值范围是

此时:

当且仅当时取等号

的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy.直线1的参数方程为t为参数).在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中.曲线C的极坐标方程为ρ2cosθ.

1)若曲线C关于直线l对称,求a的值;

2)若AB为曲线C上两点.且∠AOB,求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数(其中).

(1)当时,求不等式的解集;

(2)若关于的不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】红铃虫是棉花的主要害虫之一,能对农作物造成严重伤害,每只红铃虫的平均产卵数y和平均温度x有关,现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.(表中

平均温度

21

23

25

27

29

32

35

平均产卵数/

7

11

21

24

66

115

325

27.429

81.286

3.612

40.182

147.714

1)根据散点图判断,(其中自然对数的底数)哪一个更适宜作为平均产卵数y关于平均温度x的回归方程类型?(给出判断即可,不必说明理由)并由判断结果及表中数据,求出y关于x的回归方程.(计算结果精确到小数点后第三位)

2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治记该地每年平均温度达到28℃以上的概率为.

①记该地今后5年中,恰好需要3次人工防治的概率为,求的最大值,并求出相应的概率p.

②当取最大值时,记该地今后5年中,需要人工防治的次数为X,求X的数学期望和方差.

附:线性回归方程系数公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD为直角梯形,ADBC,∠ADC90°,平面PAD⊥底面ABCDQAD的中点,PAPDAD2BC1.

1)求证:平面PQB⊥平面PAD

2)若M是棱PC上的一点,且满足,求二面角MBQC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,直线与椭圆的两交点间距离为.

1)求椭圆的方程;

2)如图,设是椭圆上的一动点,由原点向圆引两条切线,分别交椭圆于点,若直线的斜率均存在,并分别记为,求证:为定值.

3)在(2)的条件下,试问是否为定值?若是,求出该值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,且经过点.

1)求椭圆的标准方程;

2)设直线与椭圆两点,是坐标原点,分别过点的平行线,两平行线的交点刚好在椭圆上,判断是否为定值?若为定值,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若不等式的解集为,求实数的值;

2)若在(1)的条件下,存在实数,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算机诞生于20世纪中叶,是人类最伟大的技术发明之一.计算机利用二进制存储信息,其中最基本单位是“位(bit)”,1位只能存放2种不同的信息:01,分别通过电路的断或通来实现.“字节(Byte)”是更大的存储单位,1Byte=8bit,因此1字节可存放从000000002111111112256种不同的信息.将这256个二进制数中,恰有相邻三位数是1,其余各位数均是0的所有数相加,则计算结果用十进制表示为(

A.378B.441C.742D.889

查看答案和解析>>

同步练习册答案