精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x},x≥4}\\{f(x+1),x<4}\end{array}}$,则$f(2-{log_{\frac{1}{2}}}3)$=$\frac{1}{24}$.

分析 由已知条件利用对数运算法则和分段函数性质得$f(2-{log_{\frac{1}{2}}}3)$=f(2+log23)=f(3+log23)=$(\frac{1}{2})^{3+lo{g}_{2}3}$,由此利用对数性质、换底公式和有理数指数幂运算法则能求出结果.

解答 解:∵函数f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x},x≥4}\\{f(x+1),x<4}\end{array}}$,
∴$f(2-{log_{\frac{1}{2}}}3)$=f(2+log23)=f(3+log23)=$(\frac{1}{2})^{3+lo{g}_{2}3}$
=$(\frac{1}{2})^{3}×(\frac{1}{2})^{lo{g}_{2}3}$
=$\frac{1}{8}×\frac{1}{3}$
=$\frac{1}{24}$.
故答案为:$\frac{1}{24}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意对数、指数的性质、运算法则和对数换底公式及函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数f(x)=log${\;}_{\frac{1}{2}}$(3x+1)的值域是(  )
A.(-∞,0)B.(-∞,1)C.(-∞,0]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.全集U={2,3,a2+2a-3},A={|a+7|,2},∁uA={5},则实数a=(  )
A.2,-4B.-2,4C.2D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不等式ex≥kx对任意实数x恒成立,则实数k的最大值为e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=log2$\frac{x}{1-x}$.
(1)求函数的定义域;
(2)若函数f(x)在其定义域内是增函数,解不等式f(t)-f(2t-$\frac{1}{2}$)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f(x)=($\frac{1}{m}$)|x|,m>1,x∈R,那么f(x)是(  )
A.偶函数且在(0,+∞)上是增函数B.奇函数且在(0,+∞)上是增函数
C.偶函数且在(0,+∞)上是减函数D.奇函数且在(0,+∞)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)是偶函数,f(-1)=0,f(x)在[0,+∞)上是增函数,则f(x)<0的解集为(  )
A.(-1,0)B.(-1,1)C.(0,1)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题P:方程x2+y2+2ax+a=0表示圆;命题Q:方程ax2+2y2=1表示焦点在x轴上的椭圆,若P∧Q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设定义在区间(-a,a)上的函数$f(x)={log_{2015}}\frac{1+mx}{1-2015x}$是奇函数(a,m∈R,m≠-2015),则ma的取值范围是(  )
A.$(1,{2015^{\frac{1}{2015}}}]$B.$(0,{2015^{\frac{1}{2015}}}]$C.$(1,{2015^{\frac{1}{2015}}})$D.$(0,{2015^{\frac{1}{2015}}})$

查看答案和解析>>

同步练习册答案