【题目】若无穷数列满足: ,对于,都有(其中为常数),则称具有性质“”.
(Ⅰ)若具有性质“”,且, , ,求;
(Ⅱ)若无穷数列是等差数列,无穷数列是公比为正数的等比数列, , , ,判断是否具有性质“”,并说明理由;
(Ⅲ)设既具有性质“”,又具有性质“”,其中, , 互质,求证: 具有性质“”.
【答案】(1), (2)见解析(3见解析)
【解析】试题分析: (1)因为具有性质“”,所以, .再根据已知数据,求出即可; (2)设等差数列的公差为,由 , ,故. 设等比数列的公比为,由 , ,故,所以. 若具有性质“”,则, .又,故不具有性质“”;(3) 因为具有性质“”,所以, .①
因为具有性质“”,所以, .②,化简整理得, ,得证.
试题解析:解 :(Ⅰ)因为具有性质“”,所以, .
由,得,由,得.
因为,所以,即.
(Ⅱ)不具有性质“”.
设等差数列的公差为,由 , ,
得,所以,故.
设等比数列的公比为,由 , ,
得,又,所以,故,
所以.
若具有性质“”,则, .
因为, ,所以,
故不具有性质“”.
(Ⅲ)因为具有性质“”,所以, .①
因为具有性质“”,所以, .②
因为, , 互质,
所以由①得;由②,得,
所以,即.
②-①,得, ,
所以, ,
所以具有性质“”.
科目:高中数学 来源: 题型:
【题目】计算与求解
(1)计算:2log32﹣log3 +log38﹣5 ;
(2)已知a>0,a≠1,若loga(2x+1)<loga (4x﹣3),求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度. 药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:
根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的是
A. 首次服用该药物1单位约10分钟后,药物发挥治疗作用
B. 每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒
C. 每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用
D. 首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,四边形为等腰梯形, ∥, , ,四边形为正方形,平面平面.
(Ⅰ)若点是棱的中点,求证: ∥平面;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)在线段上是否存在点,使平面平面?若存在,求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入,已知研发投入 (十万元)与利润 (百万元)之间有如下对应数据:
2 | 3 | 4 | 5 | 6 | |
2 | 4 | 5 | 6 | 7 |
若由资料知对呈线性相关关系。试求:
(1)线性回归方程;
(2)估计时,利润是多少?
附:利用“最小二乘法”计算a,b的值时,可根据以下公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设偶函数f(x)满足f(x)=x3﹣8(x≥0),则{x|f(x﹣2)>0}=( )
A.{x|x<﹣2或x>4}
B.{x|x<0或x>4}
C.{x|x<0或x>6}
D.{x|x<﹣2或x>2}
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com