精英家教网 > 高中数学 > 题目详情

如图,圆

(Ⅰ)若圆轴相切,求圆的方程;
(Ⅱ)已知,圆C与轴相交于两点(点在点的左侧).过点任作一条直线与圆相交于两点.问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.

(Ⅰ);(Ⅱ)存在,使得.

解析试题分析:(Ⅰ)由圆轴相切,可知圆心的纵坐标的绝对值与半径相等.故先将圆的方程化成标准方程为:,由求得.即可得到所求圆的方程为:;(Ⅱ)先解出两点的坐标,要使得,则可以得到:,若设,那么有:,结合直线与圆的方程去探讨可得存在,使得.
试题解析:(Ⅰ)圆化成标准方程为:

若圆轴相切,那么有:
,解得,故所求圆的方程为:.
(Ⅱ)令,得

所以
假设存在实数
当直线AB与轴不垂直时,设直线AB的方程为
代入得,
从而
因为



因为,所以,即,得
当直线AB与轴垂直时,也成立.
故存在,使得
考点:直线与圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.
(1)若点P的轨迹为曲线C,求此曲线的方程;
(2)若点Q在直线l1xy+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知是椭圆的右焦点;圆轴交于两点,其中是椭圆的左焦点.

(1)求椭圆的离心率;
(2)设圆轴的正半轴的交点为,点是点关于轴的对称点,试判断直线与圆的位置关系;
(3)设直线与圆交于另一点,若的面积为,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求经过三点A(1,-1),B(1,4),C(4,-2)的圆的方程,并判断与圆的位置关系。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知圆和直线上一动点,为圆轴的两个交点,直线与圆的另一个交点分别为
(1)若点的坐标为(4,2),求直线方程;
(2)求证直线过定点,并求出此定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,点,直线。设圆的半径为,圆心在上。

(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求与圆外切于点,且半径为的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆
(Ⅰ)若直线过定点 (1,0),且与圆相切,求的方程;
(Ⅱ) 若圆的半径为3,圆心在直线上,且与圆外切,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是圆上的动点,
(1)求的取值范围;
(2)若恒成立,求实数的取值范围

查看答案和解析>>

同步练习册答案