精英家教网 > 高中数学 > 题目详情
13.下列四种说法中,错误的个数是(  )
①命题“若函数f(x)=sinx+cosx,则$f'(\frac{π}{4})=0$”是真命题;
②“若am2<bm2,则a<b”的逆命题为真;
③“命题p∨q为真”是“命题p∧q为真”的必要不充分条件;
④命题“?x∈R,均有x2-3x-2≥0”的否定是:“?x0∈R,使得x02-3x0-2≤0”
A.0个B.1个C.2个D.3个

分析 ①,由f′(x)=-sinx+cosx,得$f'(\frac{π}{4})=0$;
②,由m2≤0可判定;
③,若p∨q为真时,p∧q不一定为真,p∧q为真时,p∨q一定为真;
④,“≥0”的否定是:“<”;

解答 解:对于①,∵f′(x)=-sinx+cosx,则$f'(\frac{π}{4})=0$”,故正确;
对于②,∵a<b不能推出am2<bm2,故错;
对于③,若p∨q为真时,p∧q不一定为真,p∧q为真时,p∨q一定为真,故正确;
对于④,命题“?x∈R,均有x2-3x-2≥0”的否定是:“?x0∈R,使得x02-3x0-2<0”,故错;
故答案为:C

点评 本题考查了命题真假的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|log2(x+1)>0},B={x|0<x<1},则∁AB=(  )
A.(0,1)B.(0,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.数列-1,3,-5,7,-9,…的一个通项公式为(  )
A.an=2n-1B.an=(-1)n(1-2n)C.an=(-1)n(2n-1)D.an(-1)n+1(2n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)={(\frac{1}{2})^x}$-tan2x,则f(x)在[0,2π]上的零点个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某四棱锥的三视图如图所示,则俯视图的面积为(  )
A.2B.$\frac{5}{2}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)是定义域为[-2,2]的奇函数,且在[0,2]上单调递增.
(Ⅰ)求证:f(x)在[-2,0]上单调递增;
(Ⅱ)若不等式f(log2(2m))<f(log2(m+2))成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.幂函数f(x)=(m2-2m+1)x2m-1在(0,+∞)上为增函数,则实数m的值为(  )
A.0B.1C.2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某企业第三年的产量比第一年的产量增加44%,若每年的平均增长率相同(设为x),则以下结论正确的是(  )
A.x>22%B.x<22%C.x=22%D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量|$\overrightarrow{a}$|=3,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{3}{2}$,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\frac{3\sqrt{6}}{2}$,则向量$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

同步练习册答案