精英家教网 > 高中数学 > 题目详情
9.已知f(x+2)=-f(x),当x∈[4,6]时f(x)=2x-1,求f(x)在[0,2]上的表达式.

分析 由已知中函数f(x)满足f(x+2)=-f(x),可得f(x)的周期为4,结合当x∈[4,6]时f(x)=2x-1,可求f(x)在[0,2]上的表达式.

解答 解:由f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
故f(x)的周期为4
当x∈[0,2]时,x+4∈[4,6],
∴f(x+4)=2x+4-1,
又T=4,
∴f(x)=f(x+4)=2x+4-1,x∈[0,2].

点评 本题考查的知识点是函数的周期性,函数的解析式的求法,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在平行四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,先用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{AC}$和$\overrightarrow{DB}$,并回答:当$\overrightarrow{a}$,$\overrightarrow{b}$分别满足什么条件时,四边形ABCD为矩形、菱形、正方形?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设数列{an}的前n项和为Sn,且an=sin$\frac{nπ}{2}$,则S2014=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$,
(1)求作:$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$+$\overrightarrow{d}$.
(2)设|$\overrightarrow{a}$|=2.$\overrightarrow{e}$为单位向量,求|$\overrightarrow{a}$+$\overrightarrow{e}$|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.$\frac{\sqrt{1-2sin40°•cos40°}}{sin40°-\sqrt{1-si{n}^{2}40°}}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点A(2,1),B(-3,2),在x轴上一点P,使|PA|+|PB|最小,则点P的坐标为($\frac{1}{3}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.化简$\sqrt{\frac{1-sinα}{1+sinα}}+\sqrt{\frac{1+sinα}{1-sinα}}$,其中sinα•tanα<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x2-ax+a+3,g(x)=ax-2a.
(1)当x>1时,方程f(x)=0有解,求a的取值范;
(2)若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=1+ax-2(a>0,且a≠1)恒过定点(2,2).

查看答案和解析>>

同步练习册答案