精英家教网 > 高中数学 > 题目详情
14.(1)求证:C${\;}_{n}^{m}$=$\frac{m+1}{n+1}$C${\;}_{n+1}^{m+1}$;
(2)求和:C${\;}_{n}^{1}$+22C${\;}_{n}^{2}$+32C${\;}_{n}^{3}$+…+k2C${\;}_{n}^{k}$+…+n2C${\;}_{n}^{n}$.

分析 (1)根据组合数的公式,把等式右边变形,化出左边公式即可;
(2)根据k(k-1)${C}_{n}^{k}$=n(n-1)${C}_{n-2}^{k-2}$,把k2${C}_{n}^{k}$化为n(n-1)${C}_{n-2}^{k-2}$+n${C}_{n-1}^{k-1}$,再由此求和.

解答 解:(1)证明:右边=$\frac{m+1}{n+1}$•$\frac{(n+1)!}{(m+1)!(n-m)!}$
=$\frac{n!}{m!(n-m)!}$
=${C}_{n}^{m}$
=左边,即证明等式成立;
(2)∵k(k-1)${C}_{n}^{k}$=k(k-1)$\frac{n!}{k!(n-k)!}$
=n(n-1)$\frac{(n-2)!}{(k-2)!(n-k)!}$
=n(n-1)${C}_{n-2}^{k-2}$,
∴k2${C}_{n}^{k}$=[k•(k-1)+k]${C}_{n}^{k}$
=n(n-1)${C}_{n-2}^{k-2}$+n${C}_{n-1}^{k-1}$,
∴C${\;}_{n}^{1}$+22C${\;}_{n}^{2}$+32C${\;}_{n}^{3}$+…+k2C${\;}_{n}^{k}$+…+n2C${\;}_{n}^{n}$
=n(n-1)(${C}_{n-2}^{0}$+${C}_{n-2}^{1}$+…+${C}_{n-2}^{n-2}$)+n(${C}_{n-1}^{0}$+${C}_{n-1}^{1}$+…+${C}_{n-1}^{n-1}$)
=n(n-1)2n-2+n2n-1
=n(n+1)2n-2

点评 本题考查了组合数公式的应用问题,也考查了转化思想与构造法的应用问题,是中档题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知下列命题:
①若a>0,则方程ax2+2x=0有解;
②“等腰三角形都相似”的逆命题;
③“若x-$\frac{3}{2}$是有理数,则x是无理数”的逆否命题;
④“若a>1,b>1,则a-b>2”的否命题.
其中真命题的序号是①.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点M的坐标是(1,1),F1是椭圆$\frac{x^2}{9}+\frac{y^2}{5}$=1的左焦点,P是椭圆上的动点,则|PF1|+|PM|的取值范围是[6-$\sqrt{2}$,6+$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P($\frac{4}{3}$,$\frac{1}{3}$),椭圆C的方程为$\frac{{x}^{2}}{2}$+y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数y=f(x)是定义在R上的偶函数,在(-∞,0]上单调递减,且有f(2)=0,则使得(x-1)•f(log3x)<0的x的范围为(  )
A.(1,2)B.$(0,\frac{1}{9})∪(9,+∞)$C.$(0,\frac{1}{9})∪(1,9)$D.$(\frac{1}{9},9)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上点P到右焦点的距离的(  )
A.最大值为5,最小值为4B.最大值为10,最小值为8
C.最大值为10,最大值为6D.最大值为9,最小值为1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数z满足$z=\frac{2+i}{i}+i$,则|z|=(  )
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow m=(2cosωx,-1),\overrightarrow n=(sinωx-cosωx,2)$(ω>0),函数f(x)=$\overrightarrow m•\overrightarrow n+3$,若函数f(x)的图象的两个相邻对称中心的距离为$\frac{π}{2}$.
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)若将函数f(x)的图象先向左平移$\frac{π}{4}$个单位,然后纵坐标不变,横坐标缩短为原来的$\frac{1}{2}$倍,得到函数g(x)的图象,当$x∈[\frac{π}{4},\frac{π}{2}]$时,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=$\frac{1}{x-1}$,那么(  )
A.函数的单调递减区间为(-∞,1),(1,+∞)B.函数的单调递减区间为(-∞,1]∪(1,+∞)
C.函数的单调递增区间为(-∞,1),(1,+∞)D.函数的单调递增区间为(-∞,1]∪(1,+∞)

查看答案和解析>>

同步练习册答案