A. | [1,2) | B. | (1,2) | C. | $[{1,\frac{3}{2}})$ | D. | $({1,\frac{3}{2}})$ |
分析 先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解方程fˊ(x)=0,使方程的解在定义域内的一个子区间(k-1,k+1)内,建立不等关系,解之即可.
解答 解:因为f(x)定义域为(0,+∞),
又f′(x)=4x-$\frac{1}{x}$,
由f'(x)=0,得x=$\frac{1}{2}$,
当x∈(0,$\frac{1}{2}$)时,f'(x)<0,
当x∈($\frac{1}{2}$,+∞)时,f'(x)>0
据题意,$\left\{\begin{array}{l}{k-1<\frac{1}{2}<k+1}\\{k-1>0}\end{array}\right.$,
解得:1<k<$\frac{3}{2}$,
故选:D.
点评 本题主要考查了对数函数的导数,以及利用导数研究函数的单调性等基础知识,考查计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | $-\frac{1}{3}$ | B. | $-\frac{1}{6}$ | C. | 0 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com