精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}的前n项和为Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比数列.
(1)求数列{an}的通项公式;
(2)设{ }是首项为1公比为2的等比数列,求数列{bn}前n项和Tn

【答案】
(1)解:∵等差数列{an}的前n项和为Sn,公差d≠0,

且S3+S5=50,a1,a4,a13成等比数列.

解得

∴an=a1+(n﹣1)d=3+2(n﹣1)=2n+1,

∴an=2n+1


(2)解:∵{ }是首项为1公比为2 的等比数列,

两式相减得:

=1+(2n﹣1)2n


【解析】(1)由已知条件利用等差数列的前n项和公式和通项公式以及等比数列的性质,求出首项和公差,由此能求出an=2n+1.(2) ,由此利用错位相减法能求出数列{bn}前n项和Tn
【考点精析】利用数列的前n项和对题目进行判断即可得到答案,需要熟知数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,∠ACB为钝角,AC=BC=1, 且x+y=1,函数 的最小值为 ,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:x>0,x+ >a;命题q:x0∈R,x02﹣2ax0+1≤0.若¬q为假命题,p∧q为假命题,则求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥,侧棱,底面三角形为正三角形,边长为,顶点在平面上的射影为,有,且.

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)线段上是否存在点使得⊥平面,如果存在,求的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=2n+1,(n∈N*).
(1)求数列{an}的通项an
(2)设bn=nan+1 , 求数列{bn}的前n项和Tn
(3)设cn= ,求证:c1+c2+…+cn .(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学举行了一次环保知识竞赛活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).

(1)求样本容量n和频率分布直方图中x、y的值;

(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到市政广场参加环保知识宣传的志愿者活动,求所抽取的2名同学来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知0<β<α< ,tanα=4 ,cos(α﹣β)=
(1)求sin2α的值;
(2)求β的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆C:(x﹣3)2+(y﹣4)2=5,A、B是圆C上的两个动点,AB=2,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+2ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.
(1)求a的值及函数f(x)的极值;
(2)证明:当x>0时,x2+1<ex

查看答案和解析>>

同步练习册答案