精英家教网 > 高中数学 > 题目详情
已知向量
a
=(cosα,sinα)
b
=(1+cosβ,-sinβ)

(Ⅰ)若α=
π
3
,β∈(0,π),且
a
b
,求β;
(Ⅱ)若β=α,求
a
b
的取值范围.
考点:平面向量数量积的坐标表示、模、夹角
专题:平面向量及应用
分析:(I)由
a
b
可得
a
b
=0,再解出三角函数方程即可;
(II)利用数量积运算可得
a
b
,再通过换元法利用二次函数的单调性即可得出.
解答: 解:(Ⅰ)∵
a
b

a
b
=cosα+cosαcosβ-sinαsinβ=0

α=
π
3

cos
π
3
+cos
π
3
cosβ-sin
π
3
sinβ=0

整理得cos(β+
π
3
)=-
1
2

β+
π
3
=
3
+2kπ
,(k∈Z).
∵β∈(0,π),取k=0可得β=
π
3

(Ⅱ)∵β=α,
a
b
=cosα+cos2α-sin2α=cosα+2cos2α-1

令t=cosα,t∈[-1,1],
a
b
=2t2+t-1=2(t+
1
4
)2-
9
8

∴当t=1时,
a
b
max
=2
,当t=-
1
4
时,
a
b
 min=-
9
8

a
b
的取值范围为[-
9
8
,2]
点评:本题考查了
a
b
?
a
b
=0、三角函数方程、数量积运算、换元法、二次函数的单调性等基础知识与基本技能方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若不等式x2-2x+3-a<0成立的一个充分条件是0<x<4,则实数a的取值范围应为(  )
A、a≥11B、a>11
C、a>9D、a≥9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为e=
2
2
,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+
2
=0
相切.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过右焦点F作斜率为-
2
2
的直线l交曲线C于M、N两点,且
OM
+
ON
+
OH
=
0
,又点H关于原点O的对称点为点G,试问M、G、N、H四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱台ABC-A1B1C1中,已知其上、下底面边长分别为3cm和6cm,AA1=3cm,求此三棱台的侧面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的中心为原点O,离心率e=
2
2
,其一个焦点在抛物线C2:y2=2px的准线上,若抛物线C2与直线l:x-y+
2
=0
相切.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)当点Q(u,v)在椭圆C1上运动时,设动点P(2v-u,u+v)的运动轨迹为C3.若点T满足:
OT
=
MN
+2
OM
+
ON
,其中M,N是C3上的点,直线OM与ON的斜率之积为-
1
2
,试说明:是否存在两个定点F1,F2,使得|TF1|+|TF2|为定值?若存在,求F1,F2的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+
2
=0相切.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点A,B,以OA,OB为邻边作一个平行四边形OAQB,记直线OQ与椭圆交于P点,且满足
|OQ|
|OP|
=λ(O为坐标原点),求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}为公差不为零的等差数列,首项a1=a,{an}的部分项ak1ak2、…、akn恰为等比数列,且k1=1,k2=5,k3=17.
(1)求数列{an}的通项公式an(用a表示);
(2)设数列{kn}的前n项和为Sn,求证:
1
S1
+
1
S2
+…+
1
Sn
3
2
 
 
(n是正整数).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=4y的焦点为F,点A(2,0),射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y之间具有线性相关关系,其回归方程为
y
=-3+bx,若
10
i=1
xi
=17,
10
i=1
yi=4
,则b的值为(  )
A、2B、1C、-2D、-1

查看答案和解析>>

同步练习册答案