精英家教网 > 高中数学 > 题目详情

设函数
(1)求证:函数上单调递增;
(2)设,若直线轴,求两点间的最短距离.

(1)详见解析;(2)3.

解析试题分析:(1) 本小题首先利用求导的公式与法则求得函数的导数,通过分析其值的正负可得函数的单调性,函数上单调递增;
(2) 本小题主要利用导数分析函数的单调性上单调递增,然后求得目标函数的最值即可。
试题解析:(1)时,
所以函数上单调递增;              6分
(2)因为,所以      8分
所以两点间的距离等于,  9分
,则
,则
所以,         12分
所以上单调递增,所以   14分
所以,即两点间的最短距离等于3.     15分
考点:1.求导得公式与法则;2.导数判断单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若是函数的极值点,是函数的两个不同零点,且,求
(2)若对任意,都存在为自然对数的底数),使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若1是函数的一个零点,求函数的解析表达式;
(2)试讨论函数的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,函数.
(Ⅰ)求的值;
(Ⅱ)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的单调区间;
(Ⅱ)若曲线有三个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数,过曲线上的点的切线方程为.
(1)若时有极值,求的表达式;
(2)在(1)的条件下,求在[-3,1]上的最大值;
(3)若函数在区间[-2,1]上单调递增,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在上的函数,其中为常数.
(1)当是函数的一个极值点,求的值;
(2)若函数在区间上是增函数,求实数的取值范围;
(3)当时,若,在处取得最大值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)求函数的单调区间;
(Ⅱ)若,试解答下列两小题.
(i)若不等式对任意的恒成立,求实数的取值范围;
(ii)若是两个不相等的正数,且以,求证:

查看答案和解析>>

同步练习册答案