精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)求的最小正周期;

(2)若关于的方程在区间内有两个不相等的实数解,求实数的取值范围.

【答案】(1);(2)

【解析】分析:(1)利用二倍角的正弦公式、二倍角的余弦公式以及辅助角公式将函数化为,利用正弦函数的周期公式可得函数的周期;(2)关于的方程在区间内有两个不相等的实数解,等价于的图象在区间内有两个不同的交点,结合正弦函数图象可得结果.

详解(1)

所以的最小正周期为

(2)因为,所以

因为上是增函数,在上是减函数,

所以上是增函数,在上是减函数.

又因为

关于的方程在区间内有两个不相等的实数解,

等价于的图象在区间内有两个不同的交点,

所以要使得关于的方程在区间内有两个不相等的实数解,

只需满足

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间和极值;

(2)若对于任意,都有成立,求实数的取值范围;

(3)若,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:

每周移动支付次数

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合计

15

12

13

7

8

45

(1)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,按分层抽样的方法,在我市所有“移动支付达人”中,随机抽取6名用户

求抽取的6名用户中男女用户各多少人;

从这6名用户中抽取2人,求既有男“移动支付达人”又有女“移动支付达人”的概率.

(2)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,填写下表,问能否在犯错误概率不超过0.01的前提下,认为“移动支付活跃用户”与性别有关?

P(χ2k)

0.100

0.050

0.010

k

2.706

3.841

.635

非移动支付活跃用户

移动支付活跃用户

合计

合计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的参数方程为为参数),圆与圆外切于原点,且两圆圆心的距离,以坐标原点为极点,轴正半轴为极轴建立极坐标系.

(1)求圆和圆的极坐标方程;

(2)过点的直线与圆异于点的交点分别为点和点,与圆异于点的交点分别为点和点,且.求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调区间;

(2)若函数处取得极值,对恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,错误的是(

A. 一条直线与两个平行平面中的一个相交,则必与另一个平面相交

B. 平行于同一平面的两条直线不一定平行

C. 如果平面垂直,则过内一点有无数条直线与垂直.

D. 如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有

A.5B.10

C.20D.120

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面底面是矩形,中点,点边上.

(1)求三棱锥的体积;

(2)求证:

(3)若平面,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中如像招数五问中有如下问题:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升。其大意为官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3,在该问题中第3天共分发大米(

A. 192 B. 213 C. 234 D. 255

查看答案和解析>>

同步练习册答案