精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆左、右焦点分别为,短轴的两个端点分别为,点在椭圆上,且满足,当变化时,给出下列四个命题:①点的轨迹关于轴对称;②存在使得椭圆上满足条件的点仅有两个;③的最小值为2;④最大值为,其中正确命题的序号是______.

【答案】①③

【解析】

利用椭圆的定义先求解的轨迹,即可判定①正确,②不正确;结合轨迹方程进行验证,可得③正确,④不正确.

由题意,点在椭圆上,

所以

所以点也在以为焦点的椭圆上,

所以点为椭圆与椭圆的交点,共4个,故①正确,②错误;

靠近坐标轴时(),越大,点远离坐标轴时,越小,易得时,取得最小值,此时 ,两方程相加得,即的最小值为2,③正确;椭圆上的点到中心的距离小于等于,由于点不在坐标轴上,所以,④错误.

故答案为:①③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C的顶点在原点,对称轴是x轴,并且经过点,抛物线C的焦点为F,准线为l.

1)求抛物线C的方程;

2)过F且斜率为的直线h与抛物线C相交于两点ABAB分别作准线l的垂线,垂足分别为DE,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:过点,其左右焦点分别为,三角形的面积为

求椭圆C的方程;

已知A,B是椭圆C上的两个动点且不与坐标原点O共线,若的角平分线总垂直于x轴,求证:直线AB与两坐标轴围成的三角形一定是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的极小值;

2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的极坐标方程为,曲线的极坐标方程为,以极点为坐标原点,极轴为的正半轴建立平面直角坐标系.

(1)求的参数方程;

(2)已知射线,将逆时针旋转得到,且交于两点, 交于两点,求取得最大值时点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求的单调区间;

(Ⅱ)设函数,当时,若的唯一极值点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,底面ABCD是矩形,PA⊥平面ABCDAD1PAAB ,点E是棱PB的中点.

1)求异面直线ECPD所成角的余弦值;

2)求二面角B-EC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元).每件商品售价为0.05万元,通过市场分析,该厂生产的商品能全部销售完.

(1)写出年利润(万元)关于年产量(千件)的函数解析式;

(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,命题p:函数内单调递增;q:函数仅在处有极值.

1)若命题q是真命题,求a的取值范围;

2)若命题是真命题,求a的取值范围.

查看答案和解析>>

同步练习册答案