【题目】已知椭圆:左、右焦点分别为,,短轴的两个端点分别为,,点在椭圆上,且满足,当变化时,给出下列四个命题:①点的轨迹关于轴对称;②存在使得椭圆上满足条件的点仅有两个;③的最小值为2;④最大值为,其中正确命题的序号是______.
科目:高中数学 来源: 题型:
【题目】已知抛物线C的顶点在原点,对称轴是x轴,并且经过点,抛物线C的焦点为F,准线为l.
(1)求抛物线C的方程;
(2)过F且斜率为的直线h与抛物线C相交于两点A、B,过A、B分别作准线l的垂线,垂足分别为D、E,求四边形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:过点,其左右焦点分别为,,三角形的面积为.
Ⅰ求椭圆C的方程;
Ⅱ已知A,B是椭圆C上的两个动点且不与坐标原点O共线,若的角平分线总垂直于x轴,求证:直线AB与两坐标轴围成的三角形一定是等腰三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线的极坐标方程为,曲线的极坐标方程为,以极点为坐标原点,极轴为的正半轴建立平面直角坐标系.
(1)求和的参数方程;
(2)已知射线,将逆时针旋转得到,且与交于两点, 与交于两点,求取得最大值时点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=1,PA=AB= ,点E是棱PB的中点.
(1)求异面直线EC与PD所成角的余弦值;
(2)求二面角B-EC-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元).每件商品售价为0.05万元,通过市场分析,该厂生产的商品能全部销售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com