【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中,.
(1)根据散点图判断,与哪一个更适宜作烧开一壶水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程;
(3)若旋转的弧度数与单位时间内煤气输出量成正比,那么为多少时烧开一壶水最省煤气?
附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为,.
科目:高中数学 来源: 题型:
【题目】在锐角△ABC中,a=2,_______,求△ABC的周长l的范围.
在①(﹣cos,sin),(cos,sin),且,②cosA(2b﹣c)=acosC,③f(x)=cosxcos(x),f(A)
注:这三个条件中任选一个,补充在上面问题中并对其进行求解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线过原点且倾斜角为.以坐标原点为极点,轴正半轴为极轴建立坐标系,曲线的极坐标方程为.在平面直角坐标系中,曲线与曲线关于直线对称.
(Ⅰ)求曲线的极坐标方程;
(Ⅱ)若直线过原点且倾斜角为,设直线与曲线相交于,两点,直线与曲线相交于,两点,当变化时,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中,.
(1)根据散点图判断,与哪一个更适宜作烧开一壶水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程;
(3)若旋转的弧度数与单位时间内煤气输出量成正比,那么为多少时烧开一壶水最省煤气?
附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆:,圆:,动圆与圆和圆均内切.
(1)求动圆圆心的轨迹的方程;
(2)过点的直线与轨迹交于,两点,过点且垂直于的直线交轨迹于两点,两点,求四边形面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的上顶点为A,右焦点为F,O是坐标原点,是等腰直角三角形,且周长为.
(1)求椭圆的方程;
(2)若直线l与AF垂直,且交椭圆于B,C两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】疫情后,为了支持企业复工复产,某地政府决定向当地企业发放补助款,其中对纳税额在万元至万元(包括万元和万元)的小微企业做统一方案.方案要求同时具备下列两个条件:①补助款(万元)随企业原纳税额(万元)的增加而增加;②补助款不低于原纳税额(万元)的.经测算政府决定采用函数模型(其中为参数)作为补助款发放方案.
(1)判断使用参数是否满足条件,并说明理由;
(2)求同时满足条件①、②的参数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com