精英家教网 > 高中数学 > 题目详情

【题目】某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形(边长为3个单位)的顶点处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为,则棋子就按逆时针方向行走个单位,一直循环下去.则某人抛掷三次次骰子后棋子恰好又回到点处的所有不同走法共有(

A.21B.24C.25D.27

【答案】C

【解析】

抛掷三次骰子后棋子恰好又回到点处表示三次骰子的点数之和是12,列举出在点数中三个数字能够使得和为12156246336552444,共有4种组合,前四种组合又可以排列出种结果,由此利用分类计数原理能得到结果.

由题意知正方形(边长为3个单位)的周长是12

抛掷三次骰子后棋子恰好又回到点处表示三次骰子的点数之和是12

列举出在点数中三个数字能够使得和为12的有156246345336552444;共有6种组合,

前三种组合156246345;又可以排列出种结果,

336552;有6种结果,444;有1种结果.

根据分类计数原理知共有种结果,

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线CO为坐标原点,FC的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.OMN为直角三角形,则|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某度假酒店为了解会员对酒店的满意度,从中抽取50名会员进行调查,把会员对酒店的“住宿满意度”与“餐饮满意度”都分为五个评分标准:1分(很不满意);2分(不满意);3分(一般);4分(满意);5分(很满意).其统计结果如下表(住宿满意度为,餐饮满意度为

(1)求“住宿满意度”分数的平均数;

(2)求“住宿满意度”为3分时的5个“餐饮满意度”人数的方差;

(3)为提高对酒店的满意度,现从的会员中随机抽取2人征求意见,求至少有1人的“住宿满意度”为2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是矩形,,点的中点,交于点.

(Ⅰ)求异面直线所成角的余弦值;

(Ⅱ)求证:

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有(

A.360B.720C.480D.420

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解手机品牌的选择是否和年龄的大小有关,随机抽取部分华为手机使用者和苹果机使用者进行统计,统计结果如下表:

年龄 手机品牌

华为

苹果

合计

30岁以上

40

20

60

30岁以下(含30岁)

15

25

40

合计

55

45

100

附:

P

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

根据表格计算得的观测值,据此判断下列结论正确的是(

A.没有任何把握认为手机品牌的选择与年龄大小有关

B.可以在犯错误的概率不超过0.001的前提下认为手机品牌的选择与年龄大小有关

C.可以在犯错误的概率不超过0.01的前提下认为手机品牌的选择与年龄大小有关

D.可以在犯错误的概率不超过0.01手机品牌的选择与年龄大小无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在国家积极推动美丽乡村建设的政策背景下,各地根据当地生态资源打造了众多特色纷呈的乡村旅游胜地.某人意图将自己位于乡村旅游胜地的房子改造成民宿用于出租,在旅游淡季随机选取100天,对当地已有的六间不同价位的民宿进行跟踪,统计其出租率),设民宿租金为(单位:元/日),得到如图所示的数据散点图.

1)若用“出租率”近似估计旅游淡季民宿每天租出去的概率,求租金为388元的那间民宿在淡季内的三天中至少有2天闲置的概率.

2)①根据散点图判断,哪个更适合于此模型(给出判断即可,不必说明理由)?根据判断结果求回归方程;

②若该地一年中旅游淡季约为280天,在此期间无论民宿是否出租,每天都要付出的固定成本,若民宿出租,则每天需要再付出的日常支出成本.试用①中模型进行分析,旅游淡季民宿租金约定为多少元时,该民宿在这280天的收益达到最大?

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为.

参考数据:记

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有长分别为的钢管各3根(每根钢管的质地均匀、粗细相同且富有不同的编号),从中随机抽取根(假设各钢管被抽取的可能性是均等的,),再将抽取的钢管相接焊成笔直的一根.

(I)当时,记事件,求

(II)当时,若用表示新焊成的钢管的长度(焊接误差不计),求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l过曲线Cyx2的焦点F,并与曲线C交于Ax1y1),Bx2y2)两点.

1)求证:x1x2=﹣16

2)曲线C分别在点AB处的切线(与C只有一个公共点,且C在其一侧的直线)交于点M,求点M的轨迹.

查看答案和解析>>

同步练习册答案