【题目】已知函数且点(4,2)在函数f(x)的图象上.
(1)求函数f(x)的解析式,并在图中的直角坐标系中画出函数f(x)的图象;
(2)求不等式f(x)<1的解集;
(3)若方程f(x)-2m=0有两个不相等的实数根,求实数m的取值范围.
科目:高中数学 来源: 题型:
【题目】已知椭圆 + =1(a>b>0)的左右焦点F1 , F2其离心率为e= ,点P为椭圆上的一个动点,△PF1F2内切圆面积的最大值为 .
(1)求a,b的值
(2)若A、B、C、D是椭圆上不重合的四个点,且满足 , =0,求| |+| |的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点,一个焦点为的椭圆被直线截得的弦的中点的横坐标为.
(1)求此椭圆的方程;
(2)设直线与椭圆交于两点,且以为对角线的菱形的一个顶点为,求面积的最大值及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校进行社会实践,对岁的人群随机抽取 1000 人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在岁, 岁年龄段人数中,“时尚族”人数分别占本组人数的、.
(1)求岁与岁年龄段“时尚族”的人数;
(2)从岁和岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在岁内的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆经过点,且两焦点与短轴的一个端点的连线构成等腰直角三角形.
()求椭圆的方程.
()过定点的动直线,交椭圆于、两点,试问:在坐标平面上是否存在一个定点,使得以为直径的圆恒过点.若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形是正方形, 平面, 分别为的中点,且.
(1)求证:平面平面;
(2)求证:平面平面;
(3)求三棱锥与四棱锥的体积之比.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com