精英家教网 > 高中数学 > 题目详情

【题目】已知函数),其中为自然对数的底数.

(1)讨论函数的单调性;

(2)已知 为整数,若对任意,都有恒成立,求的最大值.

【答案】(1)见解析(2)2

【解析】试题分析:(1)先求导数,再根据m范围确定导函数零点,根据导函数符号确定单调性,(2)先分离得,再利用导数研究函数单调性(隐零点),根据单调性求最小值,根据极值条件化简最小值,最后根据最小值范围确定k范围,进而确定的最大值.

试题解析:解:(1)由题意得,函数的定义域为

,则,所以函数在区间上单调递减;

,则当时, ,当时,

所以在区间上单调递增,在区间上单调递减.

(2)当时,对任意,都与恒成立,等价于对任意的恒成立,

,则

由(1)知,当时, 在区间上单调递减.

因为

所以在区间上存在唯一零点,

在区间上也存在唯一零点,

设此零点为,则.

因为当时,

时,

所以在区间上的最小值为

所以.

又因为

所以

所以.

又因为为整数,且

所以的最大值是2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】边长为的等边三角形内任一点到三边距离之和为定值,这个定值等于;将这个结论推广到空间是:棱长为的正四面体内任一点到各面距离之和等于________________.(具体数值)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCDADBCADCD,且ADCD=2BC=4PA=2.

(1)求证:ABPC

(2)在线段PD上,是否存在一点M,使得二面角MACD的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列叙述错误的是(

A.已知直线和平面,若点,点,则

B.若三条直线两两相交,则三条直线确定一个平面

C.若直线不平行于平面,且,则内的所有直线与都不相交

D.若直线不平行,且,则l至少与中的一条相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知四棱锥的底面为矩形, 底面,且), 分别是 的中点.

(1)当为何值时,平面平面?并证明你的结论;

(2)当异面直线所成角的正切值为2时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在一个实数,使得成立,则称为函数的一个不动点,设函数 为自然对数的底数),定义在上的连续函数满足,且当时, .若存在,且为函数的一个不动点,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点一个焦点为的椭圆被直线截得的弦的中点的横坐标为.

(1)求此椭圆的方程;

(2)设直线与椭圆交于两点,且以为对角线的菱形的一个顶点为面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果的定义域为,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”.给出下列命题:

①函数具有“性质”;

②若奇函数具有“性质”,且,则

③若函数具有“性质”,图象关于点成中心对称,且在上单调递减,则上单调递减,在上单调递增;

④若不恒为零的函数同时具有“性质”和“性质”,且函数,都有 成立,则函数是周期函数.

其中正确的是__________(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在几何体中,四边形是菱形,平面,且.

(1)证明:平面平面

(2)若二面角是直二面角,求异面直线所成角的余弦值.

查看答案和解析>>

同步练习册答案