精英家教网 > 高中数学 > 题目详情

【题目】已知点在曲线上,过原点,且与轴的另一个交点为,若线段和曲线上分别存在点、点和点,使得四边形(点 顺时针排列)是正方形,则称点为曲线完美点.那么下列结论中正确的是( ).

A. 曲线上不存在完美点

B. 曲线上只存在一个完美点,其横坐标大于

C. 曲线上只存在一个完美点,其横坐标大于且小于

D. 曲线上存在两个完美点,其横坐标均大于

【答案】B

【解析】如图,如果点完美点则有,以为圆心, 为半径作圆(如图中虚线圆)交轴于 (可重合),交抛物线于点 当且仅当时,在圆上总存在点,使得的角平分线,即,利用余弦定理可求得此时,即四边形是正方形,即点完美点,如图,结合图象可知,点一定是上方的交点,否则在抛物线上不存在使得 也一定是上方的点,否则, 不是顺时针,再考虑当点横坐标越来越大时, 的变化情况:

,当时, ,此时圆与轴相离,此时点不是完美点,故只需要考虑,当增加时, 越来越小,且趋近于,而当时, ;故曲线上存在唯一一个完美点其横坐标大于.故选

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,P是双曲线 (a>0,b>0,xy≠0)上的动点,F1,F2是双曲线的焦点,M是∠F1PF2的平分线上一点,且.某同学用以下方法研究|OM|:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2N的中点,得|OM|=|NF1|=…=a。类似地:P是椭圆 (a>b>0,xy≠0)上的动点,F1,F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且,则|OM|的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面为正方形,且底面的平面与侧面的交线为且满足表示的面积.

(1)证明: 平面

(2)当时,二面角的余弦值为的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为矩形的四棱锥中, .

(1)证明:平面平面

(2)若异面直线所成角为 ,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】编号分别为16名篮球运动员在某次训练比赛中的得分记录如下:

运动员编号

得分

15

35

21

28

25

36

18

34

运动员编号

得分

17

26

25

33

22

12

31

38

(1)将得分在对应区间内的人数填入相应的空格:

区间

[10,20

[20,30)

[30,40]

人数

(2)从得分在区间[20,30)内的运动员中随机抽取2.

()用运动员编号列出所有可能的抽取结果;

()求这2人得分之和大于50的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,短轴长为,且两个焦点和短轴的两个端点恰为一个正方形的顶点,过右焦点轴不垂直的直线交椭圆于 两点.

Ⅰ)求椭圆的方程.

Ⅱ)当直线的斜率为时,求的面积.

Ⅲ)在线段上是否存在点,使得经 为领边的平行四边形是菱形?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随机抽取1000人对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的1000人中的性别以及意见进行了分类,得到的数据如下表所示:

总计

认为共享产品对生活有益

400

300

700

认为共享产品对生活无益

100

200

300

总计

500

500

1000

(1)根据表中的数据,能否在犯错误的概率不超过0.1%的前提下,认为共享产品的态度与性别有关系?

(2)为了答谢参与问卷调查的人员,该公司对参与本次问卷调查的人员随机发放1张超市的购物券,购物券金额以及发放的概率如下:

购物券金额

20元

50元

概率

现有甲、乙两人领取了购物券,记两人领取的购物券的总金额为,求的分布列和数学期望.

参考公式:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市小型机动车驾照科二考试中共有5项考察项目,分别记作⑤.

1)某教练将所带10名学员科二模拟考试成绩进行统计(如图1所示),并打算从恰有2项成绩不合格的学员中任意抽出2人进行补测(只测不合格的项目),求补测项目种类不超过3项的概率;

2)如图2,某次模拟演练中,教练要求学员甲倒车并转向90°,在汽车边缘不压射线AC与射线BD的前提下,将汽车驶入指定的停车位. 根据经验,学员甲转向90°后可使车尾边缘完全落在线段CD,且位于CD内各处的机会相等.CA="BD=0.3m," AB="2.4m." 汽车宽度为1.8m, 求学员甲能按教练要求完成任务的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12)

已知函数,.

)求的定义域;

)判断的奇偶性并予以证明;

)当时,求使的取值范围.

查看答案和解析>>

同步练习册答案