精英家教网 > 高中数学 > 题目详情
用反证法证明命题“设为实数,则方程至少有一个实根”时,要做的假设是(   )
A.方程没有实根
B.方程至多有一个实根
C.方程至多有两个实根
D.方程恰好有两个实根
A
反证法的步骤第一步是假设命题反面成立,而“方程至少有一实根”的反面是“方程没有实根”,故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知,试证明至少有一个不小于1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax (a>1).
(1)证明:函数f(x)在(-1,+∞)上为增函数;
(2)用反证法证明方程f(x)=0没有负数根.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

平面直角坐标系下直线的方程为Ax+By+C=0(A2+B2≠0),用类比的方法推测空间直角坐标系下平面的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

我们常用定义解决与圆锥曲线有关的问题.如“设椭圆
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1,F2,过左焦点F1作倾斜角为θ的弦AB,设|F1A|=r1,|F1B|=r2,试证
1
r1
+
1
r2
为定值”.
证明如下:不妨设A在x轴的上方,在△ABC中,由椭圆的定义及余弦定理得,(2a-r12=r12+4c2-4cr1cosθ,∴r1=
b2
a-ccosθ

同理r2=
b2
a-ccos(π-θ)
=
b2
a+ccosθ
,于是
1
r
1
+
1
r
2
=
2a
b2
.请用类似的方法探索:设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1,F2,过左焦点F1作倾斜角为θ的直线与双曲线右支交于点A,左支交于点B,设|F1A|=r1,|F1B|=r2,是否有类似的结论成立,请写出与定值有关的结论是______..

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( )
A.假设至少有一个钝角B.假设至少有两个钝角
C.假设没有一个钝角D.假设没有一个钝角或至少有两个钝角

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设x,y,z>0,则三个数 (  )
A.都大于2B.至少有一个大于2
C.至少有一个不小于2D.至少有一个不大于2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若P=+,Q=+(a≥0),则P,Q的大小关系是(  )
A.P>QB.P=QC.P<QD.由a的取值确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

甲、乙、丙、丁四位歌手参加比赛,只有其中一位获奖.有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是(   )
A.甲B.乙C.丙D.丁

查看答案和解析>>

同步练习册答案