精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.

(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.

【答案】
(1)

解:联立得:

解得:

∴圆心C(3,2).

若k不存在,不合题意;

若k存在,设切线为:y=kx+3,可得圆心到切线的距离d=r,即 =1,

解得:k=0或k=﹣

则所求切线为y=3或y=﹣ x+3;


(2)

解:设点M(x,y),由MA=2MO,知: =2

化简得:x2+(y+1)2=4,

∴点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,

又∵点M在圆C上,C(a,2a﹣4),

∴圆C与圆D的关系为相交或相切,

∴1≤|CD|≤3,其中|CD|=

∴1≤ ≤3,

解得:0≤a≤


【解析】(1)联立直线l与直线y=x﹣1解析式,求出方程组的解得到圆心C坐标,根据A坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k的方程,求出方程的解得到k的值,确定出切线方程即可;(2)设M(x,y),由MA=2MO,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列满足

(1)求的通项公式;

(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数gx)的图象,则下列说法不正确的是()

A.函数gx)的图象关于点对称

B.函数gx)的周期是

C.函数gx)在上单调递增

D.函数gx)在上最大值是1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,AB=AC,D是△ABC外接圆上 上的点(不与点A、C重合),延长BD至F.

(1)求证:AD延长线DF平分∠CDE;
(2)若∠BAC=30°,△ABC中BC边上的高为2+ ,求△ABC外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人各射击一次,击中目标的概率分别是.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响.

(1)求甲射击4次,至少1次未击中目标的概率;

(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,已知直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为直线与曲线交于两点.

(1)求直线l的普通方程和曲线的直角坐标方程;

(2)已知点的极坐标为,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学将100名高一新生分成水平相同的甲、乙两个平行班,每班50人.陈老师采用AB两种不同的教学方式分别在甲、乙两个班进行教改实验.为了了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为成绩优秀

根据频率分布直方图填写下面2×2列联表,并判断能否在犯错误的概率不超过005的前提下认为:成绩优秀与教学方式有关.


甲班(A方式)

乙班(B方式)

总计

成绩优秀




成绩不优秀




总计




附:K2

PK2≥k

025

015

010

005

0025

k

1323

2072

2706

3841

5024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,已知直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为直线与曲线交于两点.

(1)求直线l的普通方程和曲线的直角坐标方程;

(2)已知点的极坐标为,的值.

查看答案和解析>>

同步练习册答案