精英家教网 > 高中数学 > 题目详情
12.已知变量x,y满足$\left\{\begin{array}{l}2x-y≤0\\ x-2y+3≥0\\ x≥0\end{array}\right.$,则z=x+y+5的最大值为8.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}2x-y≤0\\ x-2y+3≥0\\ x≥0\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{2x-y=0}\\{x-2y+3=0}\end{array}\right.$,解得A(1,2),
化目标函数z=x+y+5为y=-x+z-5,
由图可知,当直线y=-x+z-5过点A(1,2)时,直线在y轴上的截距最大,z有最大值为8.
故答案为:8.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,x<1}\\{-{x}^{2}+ax-1,x≥1}\end{array}\right.$是(-∞,+∞)上的减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.点P与定点F(2,0)的距离和它到定直线x=$\frac{1}{2}$的距离的比是2:1,求点P的轨迹方程,并说明轨迹是什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知三角形的三边长分别为$a,b,\sqrt{{a^2}+{b^2}+\sqrt{3}ab}$,则三角形的最大内角是(  )
A.60°B.90°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数$f(x)=\left\{\begin{array}{l}1+{log_2}(2-x),x<1\\{2^{x-1}},x≥1\end{array}\right.$,f(-6)+f(log214)=(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知cos2A+cos2B=2cos2C,那么cosC的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.绝对值不等值|x|≥5的解集为{x|x≤-5,或x≥5 }.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若命题ρ:$\sqrt{1-sin2x}$=sinx-cosx为真,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.F1、F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,椭圆上的点到F2的最近距离为4,最远距离为16.
(1)求椭圆的方程;
(2)P为该椭圆上一点,且∠F1PF2=60°,求△F1PF2的面积.

查看答案和解析>>

同步练习册答案