精英家教网 > 高中数学 > 题目详情
如图所示,E、F分别是正方形SD1DD2的边D1D、DD2的中点沿SE,SF,EF将其折成一个几何体,使D1,D,D2重合,记作D。给出下列位置关系:①SD⊥面DEF;  ②SE⊥面DEF; ③DF⊥SE;  ④EF⊥面SED,其中成立的有           
①③
解:由题意因为SD⊥DF,SD⊥DE,DE⊥DF,DE=DF
显然①正确;②错误;③正确;④错误.
故答案为:①与③
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在四棱柱中,侧面⊥底面,底面为直角梯形,其中
,O为中点.

(Ⅰ)求证:平面 ;
(Ⅱ)求锐二面角A—C1D1—C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图5,已知直角梯形所在的平面垂直于平面

.  
(1)在直线上是否存在一点,使得
平面?请证明你的结论;
(2)求平面与平面所成的锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)如图所示,在四面体中,已知
,,,是线段上一点,
,点在线段上,且

⑴证明
⑵求二面角的平面角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4,
 
G为PD中点,E点在AB上,平面PEC⊥平面PDC.
(Ⅰ)求证:AG⊥平面PCD;
(Ⅱ)求证:AG∥平面PEC;
(Ⅲ)求点G到平面PEC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示, 四棱锥PABCD的底面是边长为1的正方形,PA^CDPA = 1, PD=,EPD上一点,PE = 2ED

(Ⅰ)求证:PA^平面ABCD
(Ⅱ)求二面角D-ACE的余弦值;
(Ⅲ)在侧棱PC上是否存在一点F,使得BF // 平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为三条不同的直线,为一个平面,下列命题中正确的个数是  (   )
①若,则相交
②若
③若||||,则
④若||,则||
A.1B.2 C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的七面体是由三棱台ABC – A1B1C1和四棱锥D- AA1C1C对接而成,四边形ABCD是边长为2的正方形,BB1⊥平面ABCD,BB1=2A1B1=2.

(I)求证:平面AA1C1C1⊥平面BB1D;
(Ⅱ)求二面角A –A1D—C1的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分10分)如图4,在长方体中,,点在棱上移动,问等于何值时,二面角的大小为

查看答案和解析>>

同步练习册答案