精英家教网 > 高中数学 > 题目详情
已知a∈R,函数f(x)=
a
x
+lnx-1
,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).
(1)求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.
(1)∵f(x)=
a
x
+lnx-1

f′(x)=-
a
x2
+
1
x
=
x-a
x2

令f'(x)=0,得x=a.
①若a≤0,则f'(x)>0,f(x)在区间(0,e]上单调递增,此时函数f(x)无最小值.
②若0<a<e,当x∈(0,a)时,f'(x)<0,函数f(x)在区间(0,a)上单调递减,
当x∈(a,e]时,f'(x)>0,函数f(x)在区间(a,e]上单调递增,
所以当x=a时,函数f(x)取得最小值lna
③若a≥e,则f'(x)≤0,函数f(x)在区间(0,e]上单调递减,
所以当x=e时,函数f(x)取得最小值
a
e

.综上可知,当a≤0时,函数f(x)在区间(0,e]上无最小值;
当0<a<e时,函数f(x)在区间(0,e]上的最小值为lna;
当a≥e时,函数f(x)在区间(0,e]上的最小值为
a
e

(2)∵g(x)=(lnx-1)ex+x,x∈(0,e],
∴g'(x)=(lnx-1)ex+(lnx-1)(ex+1=
ex
x
+(lnx-1)ex+1=(
1
x
+lnx-1)ex+1

由(1)可知,当a=1时,f(x)=
1
x
+lnx-1

此时f(x)在区间(0,e]上的最小值为ln1=0,即
1
x
+lnx-1≥0
.(10分)
当x0∈(0,e],ex0>0
1
x0
+lnx0-1≥0

g′(x0)=(
1
x0
+lnx0-1)ex0+1≥1>0

曲线y=g(x)在点x=x0处的切线与y轴垂直等价于方程g'(x0)=0有实数解.(13分)
而g'(x0)>0,即方程g'(x0)=0无实数解.、故不存在x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
1
12
x3+
a+1
2
x2+(4a+1)x

(Ⅰ)如果函数g(x)=f′(x)是偶函数,求f(x)的极大值和极小值;
(Ⅱ)如果函数f(x)是(-∞,?+∞)上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=ln(x+1)-x2+ax+2.
(1)若函数f(x)在[1,+∞)上为减函数,求实数a的取值范围;
(2)令a=-1,b∈R,已知函数g(x)=b+2bx-x2.若对任意x1∈(-1,+∞),总存在x2∈[-1,+∞),使得f(x1)=g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
a
x
+lnx-1,g(x)=(lnx-1)
e
x
 
+x
(其中e为自然对数的底).
(1)当a>0时,求函数f(x)在区间(0,e]上的最小值;
(2)是否存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在求出x0的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•太原一模)已知a∈R,函数 f(x)=x3+ax2+(a-3)x的导函数是偶函数,则曲线y=f(x)在原点处的切线方程为
3x+y=0
3x+y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)已知a∈R,函数f(x)=x3-3x2+3ax-3a+3.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[0,2]时,求|f(x)|的最大值.

查看答案和解析>>

同步练习册答案