精英家教网 > 高中数学 > 题目详情
3.设数列{an}满足a1=2,an+1-an=3•4n(n∈N*).
(1)求数列{an}的通项公式;
(2)令bn=nan,求数列{bn}的前n项和Sn

分析 (1)通过a1=2、an+1-an=3•4n(n∈N*),累加即得结论;
(2)通过(1)可得bn=n(4n-2),利用错位相减法计算出Tn=1×4+2×42+3×43+…+n•4n,通过Sn=Tn-2(1+2+…+n)计算即得结论.

解答 解:(1)由题意,得:
a2-a1=3×4,
a3-a2=3×42
a4-a3=3×43

an-an-1=3•4n-1(n≥2),
以上n-1个式子相加,得:
an-a1=3(4+42+43+…+4n-1
=3×$\frac{4(1-{4}^{n-1})}{1-4}$=4n-4,
∴an=a1+4n-4=4n-2.
又a1=2满足上式,
∴an=4n-2;
(2)bn=nan=n(4n-2),
Sn=1×4+2×42+3×43+…+n•4n-2(1+2+…+n),
设Tn=1×4+2×42+3×43+…+n•4n
∴4Tn=1×42+2×43+…+(n-1)•4n+n•4n+1
∴-3Tn=4+42+43+…+4n-n•4n+1=$\frac{4(1-{4}^{n})}{1-4}$-n•4n+1
∴Tn=$\frac{4-{4}^{n+1}}{9}$+$\frac{n•{4}^{n+1}}{3}$=$\frac{1}{9}$[(3n-1)•4n+1+4],
∴Sn=$\frac{1}{9}$[(3n-1)•4n+1+4]-n(n+1).

点评 本题考查求数列的通项及求和,考查运算求解能力,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知:(2x-1)n=a0+a1x+a2x2+…+anxn(n∈N*,n为常数).
(1)求|a0|+|a1|+|a2|+…+|an|;
(2)我们知道二项式(1+x)n的展开式(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn.若该等式两边对x求导得:n(1+x)n-1=Cn1+2Cn2x+3Cn3x2…+nCnnxn-1,令x=1,可得Cn1+2Cn2+3Cn3…+nCnn=n•2n-1.利用此方法解答以下问题:
①求1a1+2a2+3a3+…+nan
②求12a1+22a2+32a3+…+n2an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知扇形的半径为R,周长为3R,则扇形的圆心角等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为30°,且$|\overrightarrow a|=\sqrt{3},|\overrightarrow b|=1$,设$\overrightarrow m=\overrightarrow a+\overrightarrow b,\overrightarrow n=\overrightarrow a-\overrightarrow b$,则向量$\overrightarrow m$在$\overrightarrow n$方向上的投影为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知sinα=-$\frac{{\sqrt{3}}}{3}$,且α是第三象限角,则sin2α-tanα=(  )
A.$\frac{{\sqrt{2}}}{3}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{{\sqrt{2}}}{6}$D.$\frac{{\sqrt{2}}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC中,a:b:c=2:$\sqrt{6}$:($\sqrt{3}$+1),求△ABC各角的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知实数p,q,r满足:p+q+r=m,且p2+q2+r2=m(m>0).
(1)当r=$\frac{1}{2}$,求m的取值范围;
(2)当m=1,且p,q都不为0,求$\frac{1}{p}$+$\frac{1}{q}$的取值范围;
(3)求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.数列{an}满足a1=2,an=4an-1+6.
(1)求数列{an}的通项公式;
(2)求数列{$\frac{2+{a}_{n}}{{a}_{n}{a}_{n+1}}$}前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.有4名男生,3名女生排成一排,
(1)要求女生必须站在在一起,有多少种不同的排法?
(2)若3名女生互不相邻,有多少种不同的排法?
(3)若甲男生不站在排头,乙女生不站在排尾,则有多少种不同排法?

查看答案和解析>>

同步练习册答案