分析 (1)根据三角函数的辅助角公式进行化简结合三角函数的性质进行求解即可.
(2)求出角的范围结合三角函数的单调性和值域之间的关系进行求解即可.
解答 解:(1)由题f(x)可化为$f(x)=1+cos2x+\sqrt{3}sin2x=2sin({2x+\frac{π}{6}})+1$…(3分)
所以最小正周期T=π…(4分)
令$-\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{π}{2}+2kπ({k∈Z})$,
则$-\frac{π}{3}+kπ≤x≤\frac{π}{6}+kπ({k∈Z})$,
所以f(x)的单调递增区间为$[{-\frac{π}{3}+kπ,\frac{π}{6}+kπ}],({k∈Z})$…(6分)
(2)当x∈($\frac{π}{12}$,$\frac{π}{3}$)时,$2x+\frac{π}{6}∈({\frac{π}{3},\frac{5π}{6}})$,
由正弦图象可得$\frac{1}{2}<sin({2x+\frac{π}{6}})≤1$,…(10分)
所以2<f(x)≤3
所以f(x)的值域为(2,3]…(12分)
点评 本题主要考查三角函数图象和性质的考查,利用辅助角公式进行化简是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $4+\sqrt{7}$ | B. | $4-\sqrt{3}$ | C. | $4+\sqrt{3}$ | D. | $4-\sqrt{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com