精英家教网 > 高中数学 > 题目详情

【题目】(不等式选讲)

已知函数

(1)若,解不等式

(2)若不等式在R上恒成立,求实数的取值范围.

【答案】(1)[2,+∞).(2){a|a≥2或a≤-4}.

【解析】试题分析:(1)分x<-1,-1≤x≤3,x>3三种情况去掉绝对值讨论即可.

(2)由绝对值三角不等式的性质可得|x+a|+|x-1|≥|a+1|,只需|a+1|≥3,求解即可.

试题解析:(1)依题意,|x+1|+|x-3|≤2x.

当x<-1时,原不等式化为-1-x+3-x≤2x,解得x≥,故无解;

当-1≤x≤3时,原不等式化为x+1+3-x≤2x,解得x≥2,故2≤x≤3;

当x>3时,原不等式化为x+1+x-3≤2x,即-2≤0恒成立.

综上所述,不等式f(x)+|x-3|≤2x的解集为[2,+∞).

(2)f(x)+|x-1|≥3|x+a|+|x-1|≥3恒成立,

由|x+a|+|x-1|≥|a+1|可知,只需|a+1|≥3即可,

故a≥2或a≤-4,即实数a的取值范围为{a|a≥2或a≤-4}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,设

(1)判断函数零点的个数,并给出证明;

(2)首项为的数列满足:①;②.其中.求证:对于任意的,均有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex(x3﹣3x+2﹣c)+x(x≥﹣2),若不等式f(x)≥0恒成立,则实数c的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设连续掷两次骰子得到的点数分别为m、n,令平面向量
(1)求使得事件“ ”发生的概率;
(2)求使得事件“ ”发生的概率;
(3)使得事件“直线 与圆(x﹣3)2+y2=1相交”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)定义在实数集R上的奇函数,当x≥0时,函数y=f(x)的图象如图所示(抛物线的一部分).

(1)在原图上画出x<0时函数y=f(x)的示意图;
(2)求函数y=f(x)的解析式(不要求写出解题过程);
(3)写出函数y=|f(x)|的单调递增区间(不要求写出解题过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列函数的定义域和值域:
(1)y=3
(2)y=
(3)y=log2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如表中给出了2011年~2015年某市快递业务总量的统计数据(单位:百万件)

年份

2011

2012

2013

2014

2015

年份代码

1

2

3

4

5

快递业务总量

34

55

71

85

105


(1)在图中画出所给数据的折线图;

(2)建立一个该市快递量y关于年份代码x的线性回归模型;
(3)利用(2)所得的模型,预测该市2016年的快递业务总量.
附:回归直线方程的斜率和截距的最小二乘估计公式分别为:
斜率: ,纵截距:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 是定义在(﹣1,1)上的奇函数,且
(1)确定函数的解析式;
(2)证明函数f(x)在(﹣1,1)上是增函数;
(3)解不等式f(t﹣1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x3+ax2+1,(a∈R).
(1)若f(x)图象上横坐标为1的点处存在垂直于y轴的切线,求a的值;
(2)若f(x)在区间(﹣1,2)内有两个不同的极值点,求a取值范围;
(3)当a=1时,是否存在实数m,使得函数g(x)=x4﹣5x3+(2﹣m)x2+1的图象于函数f(x)的图象恰有三个不同的交点,若存在,试求出实数m的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案