三棱锥的三组相对的棱分别相等,且长度各为,其中,则该三棱锥体积的最大值为
A. | B. | C. | D. |
D
解析试题分析:三棱锥扩展为长方体,三棱锥的体积转化为长方体的体积与四个三棱锥的体积的差,推出B不正确,则C不正确,通过特殊图形说明D正确
解:如图设长方体的三度为,a,b,c;所以所求三棱锥的体积为:abc-4××abc=abc. a2+b2=2,b2+c2=n2,a2+c2=m2,所以2(a2+b2+c2)=n2+m2+2=8. a2+b2+c2=4.因为4≥3
,abc≤此时a=b=c,与n2+m2=6,a2+b2=2,矛盾,所以选项B不正确;则C不正确;当底面三角形是等腰三角形时,m=n=
不难求出三棱锥体积的最大值为,选D.
考点:几何体的体积
点评:本题考查几何体的体积的求法,扩展为长方体是解题的关键,考查基本不等式的应用,转化思想与计算能力.
科目:高中数学 来源: 题型:单选题
如图,在四棱锥P-ABCD中,侧面PAD为正三角形,底面为正方形,侧面PAD与底面ABCD垂直,M为底面内的一个动点,且满足MP=MC,则动点M的轨迹为( )
A.椭圆 | B.抛物线 | C.双曲线 | D.直线 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD="2AB=6," 则该球的表面积为( )
A.16 | B.24 | C.48 | D.32 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2,AB=1,AC=2,∠BAC=60°,则球O的表面积为
A.4 | B.12 | C.16 | D.64 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
下列说法中正确的是
A.棱柱的侧面可以是三角形 |
B.正方体和长方体都是特殊的四棱柱 |
C.所有的几何体的表面都能展成平面图形 |
D.棱柱的各条棱都相等 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com