精英家教网 > 高中数学 > 题目详情
20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F2,过F2作其中一条渐近线的垂线,分别交y轴和该渐近线于M,N两点,且$\overrightarrow{MN}$=3$\overrightarrow{N{F}_{2}}$,则$\frac{a}{b}$=$\sqrt{3}$.

分析 设渐近线的方程为y=$\frac{b}{a}$x,过N作x轴的垂线,垂足为P,根据向量关系建立长度关系进行求解即可.

解答 解:设渐近线的方程为y=$\frac{b}{a}$x,过N作x轴的垂线,垂足为P,
由$\overrightarrow{MN}$=3$\overrightarrow{N{F}_{2}}$,得$\frac{|{F}_{2}P|}{|O{F}_{2}|}$=$\frac{|{F}_{2}N|}{|{F}_{2}M|}$=$\frac{1}{4}$,
得N的坐标为($\frac{3c}{4}$,$\frac{3bc}{4a}$),
∵NF2⊥ON,
∴$\frac{3bc}{4a}÷(\frac{3c}{4}-c)$=-$\frac{a}{b}$,
化简得$\frac{{b}^{2}}{{a}^{2}}$=$\frac{1}{3}$,
则$\frac{a}{b}$=$\sqrt{3}$,
故答案为:$\sqrt{3}$

点评 本题主要考查双曲线向量的计算,根据条件结合向量共线的条件进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|x2-4x-5<0},B={x|3<2x-1<7},设全集U=R,
求(1)A∪B.(2)A∩∁UB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若双曲线上存在点P,使得P到两个焦点的距离之比为2:1,则称此双曲线存在“L点”,下列双曲线中存在“L点”的是(  )
A.${x^2}-\frac{y^2}{4}=1$B.${x^2}-\frac{y^2}{9}=1$C.${x^2}-\frac{y^2}{15}=1$D.${x^2}-\frac{y^2}{24}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知O为原点,过双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)上的点P作两条渐近线的平行线,且与两渐近线的交点分别为A,B,平行四边形OBPA的面积为2,则此双曲线的渐近线方程为(  )
A.y=±$\frac{1}{4}$xB.y=±$\frac{1}{3}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.小芳投掷一枚均匀的骰子,则它投掷得的点数为奇数的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一次函数y=-$\frac{m}{n}$x+$\frac{1}{n}$的图象同时经过第一、二、四象限的必要不充分条件是(  )
A.mn>0B.m>1,且n>1C.m>0,且n<0D.m>0,且n>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.sin80°cos70°+sin10°sin70°=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线$\sqrt{3}$x-y+3=0的倾斜角是(  )
A.30°B.45°C.60°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x+2y-4≤0}\\{3x+y-3≥0}\\{x-y-1≤0}\end{array}}\right.$,则目标函数z=x-2y的最小值为(  )
A.$-\frac{16}{5}$B.-3C.0D.1

查看答案和解析>>

同步练习册答案