精英家教网 > 高中数学 > 题目详情
6.已知m,n∈R,则“mn<0”是“方程$\frac{x^2}{m}-\frac{y^2}{n}=1$为双曲线方程”的(  )条件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

分析 根据充分必要条件的定义求出mn>0,根据充分必要条件的定义判断即可.

解答 解:“方程$\frac{x^2}{m}-\frac{y^2}{n}=1$为双曲线方程”,
则mn>0,
则mn<0是方程$\frac{x^2}{m}-\frac{y^2}{n}=1$为双曲线方程”的既不充分也不必要条件,
故选:D.

点评 本题考查了充分必要条件,考查双曲线的定义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD=$\sqrt{3}$AD,AE⊥PC于点E,EF∥CD,交PD于点F
(Ⅰ)证明:平面ADE⊥平面PBC
(Ⅱ)求二面角D-AE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-(m-2)x-2m
(1)当m=4且x∈[2,3]时,求函数f(x)的值域;
(2)若m∈[1,3]时,f(x)≤0恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程与圆${(x+\sqrt{3})}^{2}+{(y+1)}^{2}=1$相切,则此双曲线的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=f'(2){x^3}+\frac{1}{x}$,则f(2)=(  )
A.$-\frac{1}{4}$B.$\frac{1}{44}$C.$\frac{15}{22}$D.$\frac{1}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)求实数a,b的值;
(2)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是定义在R上的偶函数,且f(x+1)为奇函数.若f(2)=1,则f(1)+f(2)+f(3)+…+f(2015)=(  )
A.1B.2014C.0D.-2014

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线(m+2)x+my+1=0与直线(m-1)x+(m-4)y+2=0互相垂直,则m 的值为(  )
A.$\frac{1}{2}$B.-2C.-$\frac{1}{2}$或2D.-2或$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(理)如图在四面体OABC中,OA,OB,OC两两垂直,且OB=OC=3,OA=4,给出如下判断:
①存在点D(O点除外),使得四面体DABC有三个面是直角三角形;
②存在点D,使得点O在四面体DABC外接球的球面上;
③存在唯一的点D使得OD⊥平面ABC;
④存在点D,使得四面体DABC是正棱锥;
⑤存在无数个点D,使得AD与BC垂直且相等.
其中正确命题的序号是①②④⑤(把你认为正确命题的序号填上).

查看答案和解析>>

同步练习册答案