15£®¸ø³öÏÂÁÐËĸöÃüÌ⣺
¢Ùij°à¼¶Ò»¹²ÓÐ52ÃûѧÉú£¬ÏÖ½«¸Ã°àѧÉúËæ»ú±àºÅ£¬ÓÃϵͳ³éÑùµÄ·½·¨³éÈ¡Ò»¸öÈÝÁ¿Îª4µÄÑù±¾£¬ÒÑÖª7ºÅ¡¢33ºÅ¡¢46ºÅͬѧÔÚÑù±¾ÖУ¬ÄÇôÑù±¾ÖÐÁíһλͬѧµÄ±àºÅΪ23£»
¢ÚÒ»×éÊý¾Ý1£¬2£¬3£¬3£¬4£¬5µÄƽ¾ùÊý¡¢ÖÚÊý¡¢ÖÐλÊý¶¼Ïàͬ£»
¢ÛÒ»×éÊý¾Ýa£¬0£¬1£¬2£¬3£¬Èô¸Ã×éÊý¾ÝµÄƽ¾ùֵΪ1£¬ÔòÑù±¾µÄ±ê×¼²îΪ2£»
¢Ü¸ù¾Ý¾ßÓÐÏßÐÔÏà¹Ø¹ØϵµÄÁ½¸ö±äÁ¿µÄͳ¼ÆÊý¾ÝËùµÃµÄ»Ø¹éÖ±Ïß·½³ÌΪ$\stackrel{¡Ä}{y}$=a+bxÖУ¬b=2£¬$\overline{x}$=1£¬$\overline{y}$=3£¬Ôòa=1£®ÆäÖÐÕæÃüÌâΪ£¨¡¡¡¡£©
A£®¢Ù¢Ú¢ÜB£®¢Ú¢ÜC£®¢Ú¢Û¢ÜD£®¢Û¢Ü

·ÖÎö ÔÚ¢ÙÖУ¬ÓÉϵͳ³éÑùµÄÔ­ÀíÖªÑù±¾ÁíһλͬѧµÄ±àºÅΪ20£»ÔÚ¢ÚÖУ¬Çó³öÊý¾ÝµÄƽ¾ùÊý¡¢ÖÐλÊý¡¢ÖÚÊýÄÜÅÐ¶Ï¶Ô´í£»ÔÚ¢ÛÖУ¬Çó³öÑù±¾µÄƽ¾ùÖµ¡¢Ñù±¾µÄ·½²î¡¢±ê×¼²î£¬ÄÜÅÐ¶Ï¶Ô´í£»ÔÚ¢ÜÖУ¬°Ñ£¨1£¬3£©´úÈë»Ø¹éÖ±Ïß·½³Ì£¬ÄÜÅÐ¶Ï¶Ô´í£®

½â´ð ½â£ºÔÚ¢ÙÖУ¬ÓÉϵͳ³éÑùµÄÔ­ÀíÖª³éÑùµÄ¼ä¸ôΪ52¡Â4=13£¬
¹Ê³éÈ¡µÄÑù±¾µÄ±àºÅ·Ö±ðΪ7£¬7+13£¬7+13¡Á2£¬7+13¡Á3£¬
¼´7ºÅ¡¢20ºÅ¡¢33ºÅ¡¢46ºÅ£¬¹Ê¢ÙÊǼÙÃüÌ⣻
ÔÚ¢ÚÖУ¬Êý¾Ý1£¬2£¬3£¬3£¬4£¬5µÄƽ¾ùÊýΪ$\frac{1}{6}$£¨1+2+3+4+5£©=3£¬
ÖÐλÊýΪ3£¬ÖÚÊýΪ3£¬¶¼Ïàͬ£¬¹Ê¢ÚÊÇÕæÃüÌ⣻
ÔÚ¢ÛÖУ¬ÓÉÌâ¿ÉÖªÑù±¾µÄƽ¾ùֵΪ1£¬ËùÒÔa+0+1+2+3=5£¬½âµÃa=-1£¬
¹ÊÑù±¾µÄ·½²îΪ£º$\frac{1}{5}$[£¨-1-1£©2+£¨0-1£©2+£¨1-1£©2+£¨2-1£©2+£¨3-1£©2]=2£¬±ê×¼²îΪ$\sqrt{2}$£¬¹Ê¢ÛÊǼÙÃüÌ⣻
ÔÚ¢ÜÖУ¬»Ø¹éÖ±Ïß·½³ÌΪ$\widehat{y}$=bx+2µÄÖ±Ïß¹ýµã£¨$\overline{x}$£¬$\overline{y}$£©£¬
°Ñ£¨1£¬3£©´úÈë»Ø¹éÖ±Ïß·½³Ì$\widehat{y}$=bx+2£¬µÃb=1£¬¹Ê¢ÜÊÇÕæÃüÌ⣻
¹ÊÑ¡£ºB£®

µãÆÀ ±¾¿¼²éÃüÌâµÄÕæ¼ÙÅжϣ¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâϵͳ³éÑù¡¢ÆµÂÊ·Ö²¼Ö±·½Í¼¡¢ÖÚÊý¡¢ÖÐλÊý¡¢Æ½¾ùÊý¡¢ÏßÐԻع鷽³ÌµÈ֪ʶµãµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®º¯Êýy=2log${\;}_{\frac{1}{2}}$2x-2log${\;}_{\frac{1}{2}}$x+3µÄµ¥µ÷µÝÔöÇø¼äΪ[$\frac{\sqrt{2}}{2}$£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÍÖÔ²CµÄÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÇÒÍÖÔ²µÄ¶ÌÖ᳤Ϊ4$\sqrt{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©µãP£¨2£¬3£©£¬Q£¨2£¬-3£©ÔÚÍÖÔ²ÉÏ£¬A¡¢BÊÇÍÖÔ²ÉÏλÓÚÖ±ÏßPQÁ½²àµÄ¶¯µã£®
¢ÙÈôÖ±ÏßABµÄбÂÊΪ$\frac{1}{2}$£¬ÇóËıßÐÎAPBQÃæ»ýµÄ×î´óÖµ£»
¢Úµ±A¡¢BÔ˶¯ÇÒÂú×ã¡ÏAPQ=¡ÏBPQʱ£¬ÊÔÎÊÖ±ÏßABµÄбÂÊÊÇ·ñΪ¶¨Öµ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®º¯Êýy=x2£¨x¡Ý1£©µÄ·´º¯ÊýΪ£¨¡¡¡¡£©
A£®$y=\sqrt{x}$£¨x¡Ý1£©B£®$y=\sqrt{-x}$£¨x¡Ü-1£©C£®$y=\sqrt{x}$£¨x¡Ý0£©D£®$y=\sqrt{-x}$£¨x¡Ü0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªa£¾0£¬b£¾0£¬Èôa+b=4£¬Ôò£¨¡¡¡¡£©
A£®a2+b2ÓÐ×îСֵB£®$\sqrt{ab}$ÓÐ×îСֵC£®$\frac{1}{a}+\frac{1}{b}$ÓÐ×î´óÖµD£®$\frac{1}{{\sqrt{a}+\sqrt{b}}}$ÓÐ×î´óÖµ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=log2£¨x+$\frac{1}{4x-4}$£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄ¶¨ÒåÓò£»
£¨2£©Çóº¯Êýf£¨x£©µÄ×îСֵ¼°´ËʱxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=4sin¦Øx•cos£¨¦Øx+$\frac{¦Ð}{3}$£©+$\sqrt{3}$µÄͼÏó¹ØÓÚÖ±Ïßx=$\frac{¦Ð}{2}$¶Ô³Æ£¬ÆäÖЦØΪ³£Êý£¬ÇҦءʣ¨0£¬1£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄ±í´ïʽ£»
£¨2£©Èô½«y=f£¨x£©µÄͼÏóÉϸ÷µãµÄºá×ø±ê±äΪԭÀ´µÄ$\frac{1}{6}$£¬ÔÙ½«ËùµÃͼÏóÏòÓÒƽÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»£¬×Ý×ø±ê²»±ä£¬µÃy=h£¨x£©µÄͼÏó£¬Èô¹ØÓÚxµÄ·½³Ìh£¨x£©+k=0ÔÚÇø¼ä[0£¬$\frac{¦Ð}{2}$]ÉÏÓÐÇÒÖ»ÓÐÒ»¸öʵÊý½â£¬ÇóʵÊýkµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚÓÉÕýÕûÊý¹¹³ÉµÄÎÞÇîÊýÁÐ{an}ÖУ¬¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐan¡Üan+1£¬ÇÒ¶ÔÈÎÒâµÄk¡ÊN*£¬ÊýÁÐ{an}ÖÐÇ¡ÓÐk¸ök£¬Ôòa2016=63£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Éèa=0.50.1£¬b=log40.1£¬c=0.40.1£¬Ôò£¨¡¡¡¡£©
A£®a£¾c£¾bB£®b£¾c£¾aC£®b£¾a£¾cD£®c£¾a£¾b

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸