精英家教网 > 高中数学 > 题目详情

【题目】定义域为R的函数f(x)对任意x∈R都有f(x)=f(4﹣x),且其导函数f′(x)满足(x﹣2)f′(x)>0,则当2<a<4时,有(
A.f(2a)<f(2)<f(log2a)
B.f(2)<f(2a)<f(log2a)
C.
D.

【答案】C
【解析】解:∵函数f(x)对任意x∈R都有f(x)=f(4﹣x),∴函数f(x)对任意x都有f(2+x)=f(2﹣x),
∴函数f(x)的对称轴为x=2
∵导函数f′(x)满足(x﹣2)f′(x)>0,
∴函数f(x)在(2,+∞)上单调递增,(﹣∞,2)上单调递减
∵2<a<4
∴4<2a<16
∵函数f(x)的对称轴为x=2
∴f(log2a)=f(4﹣log2a)
∵2<a<4,∴1<log2a<2
∴2<4﹣log2a<3
∴2<4﹣log2a<2a
∴f(2)<f(4﹣log2a)<f(2a),
∴f(2)<f(log2a)<f(2a),
故选C
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现有6个人排成一排照相,由于甲乙性格不合,所以要求甲乙不相邻,丙最高,要求丙站在最中间的两个位置中的一个位置上,则不同的站法有( )种.

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数y=cos(2x+φ)(|φ|< )的图象向左平移 个单位,得到函数y=f(x)的图象关于直线x= 对称,则φ的值为(
A.﹣
B.﹣
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,

x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为.

(1)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;

(2)若曲线C与直线相交于不同的两点MN,求|PM|+|PN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,现输入如下四个函数,则可以输出的函数是(

A.f(x)=x2
B.f(x)=
C.f(x)=ex
D.f(x)=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个小组各10名学生的英语口语测试成绩如下(单位:分).

甲组:76,90,84,86,81,87,86,82,85,83 乙组:82,84,85,89,79,80,91,89,79,74

现从这20名学生中随机抽取一人,将抽出的学生为甲组学生记为事件A;“抽出学生的英语口语测试成绩不低于85记为事件B,则P(AB)、P(A|B)的值分别是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体ABCDS中,面ABCD为矩形,SD⊥AD,且SD⊥AB,AD=1,AB=2,SD=

(1)求证:CD⊥平面ADS;
(2)求AD与SB所成角的余弦值;
(3)求二面角A﹣SB﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出的命题中:

(1)“双曲线的方程为”是“双曲线的渐近线为”的充分不必要条件;

(2)“”是“直线与直线互相垂直”的必要不充分条件;

(3)已知随机变量服从正态分布,且,则

(4)已知圆,圆,则这两个圆有3条公切线.

其中真命题的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线将圆分成4部分,用5种不同颜色给四部分染色,每部分染一种颜色,相邻部分不能染同一种颜色,则不同的染色方案有

A 120 B 240 C 260 D 280

查看答案和解析>>

同步练习册答案