【题目】已知△ABC的内角A,B,C所对的边分别为a,b,c且a+2c=2bcosA.
(1)求角B的大小;
(2)若b=2 ,a+c=4,求△ABC的面积.
【答案】
(1)解:因为a+2c=2bcosA,
由正弦定理,得sinA+2sinC=2sinBcosA,
因为C=π﹣(A+B),
所以sinA+2sin(A+B)=2sinBcosA.
即以sinA+2sinAcosB+2cosAsinB=2sinBcosA,
所以sinA(1+2cosB)=0,
因为sinA≠0,
所以cosB=﹣ ,
又因为0<B<π,
所以B=
(2)解:由余弦定理a2+c2﹣2accosB=b2及b=2 得,a2+c2+ac=12,
即(a+c)2﹣ac=12,
又因为a+c=4,
所以ac=4,
所以S△ABC= acsinB= ×4× =
【解析】(1)在△ABC中利用正弦定理整理已知式子可得cosB的值,根据内角的取值范围得到B。(2)利用已知根据余弦定理可推导出ac=4,进而得到三角形的面积。
科目:高中数学 来源: 题型:
【题目】如图,三棱锥P﹣ABC中,PA=PC,底面ABC为正三角形.
(Ⅰ)证明:AC⊥PB;
(Ⅱ)若平面PAC⊥平面ABC,AC=PC=2,求二面角A﹣PC﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知曲线 (a为参数),直线l:x﹣y﹣6=0.
(1)在曲线C上求一点P,使点P到直线l的距离最大,并求出此最大值;
(2)过点M(﹣1,0)且与直线l平行的直线l1交C于A,B两点,求点M到A,B两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx﹣x﹣ (a∈R),在定义域内有两个不同的极值点x1 , x2(x1<x2).
( I)求a的取值范围;
( II)求证:x1+x2>2e.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=mlnx(m∈R),g(x)=cosx.
(1)若函数 在(1,+∞)上单调递增,求m的取值范围;
(2)设函数φ(x)=f(x)+g(x),若对任意的 ,都有φ(x)≥0,求m的取值范围;
(3)设m>0,点P(x0 , y0)是函数f(x)与g(x)的一个交点,且函数f(x)与g(x)在点P处的切线互相垂直,求证:存在唯一的x0满足题意,且 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(ax﹣1)ex(a≠0,e是自然对数的底数).
(1)若函数f(x)在区间[1,2]上是单调减函数,求实数a的取值范围;
(2)求函数f(x)的极值;
(3)设函数f(x)图象上任意一点处的切线为l,求l在x轴上的截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(1,2), =(cosα,sinα),设 = +t (t为实数).
(1)若 ,求当| |取最小值时实数t的值;
(2)若 ⊥ ,问:是否存在实数t,使得向量 ﹣ 和向量 的夹角为 ,若存在,请求出t;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将2张边长均为1分米的正方形纸片分别按甲、乙两种方式剪裁并废弃阴影部分.
(1)在图甲的方式下,剩余部分恰能完全覆盖某圆锥的表面,求该圆锥的母线长及底面半径;
(2)在图乙的方式下,剩余部分能完全覆盖一个长方体的表面,求长方体体积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com